Recall: Context-Free Grammars

- Regular Expressions are great ... but not good enough to capture a programming language!
 - Example: RE for balanced pairs of parentheses
 - \(L = \{()\}, \left\{ (())\right\}, \ldots \) (same # of "(" and ")")

- CFGs subsume REs:
 - \((a | b)^* \) same as \(S \rightarrow aS | bS \)

Generating Strings from CFGs

- \(S \rightarrow aS | bS | \)
 - Means "we can replace \(S \) with \(aS \), \(bS \), or \(e \)"
 - Generate (derive) string "abba"
 - \(S \rightarrow aS \rightarrow abS \rightarrow abba \rightarrow abba \)

- \(S \rightarrow (S) | (\)
 - Matching pairs of ()
 - \(S \rightarrow (S) \rightarrow ((S)) \rightarrow () \)

Describing Grammars

- Example 1: \(S \rightarrow abS | a \)
 - \((ab)^*a\)

- Example 2: \(S \rightarrow aSb | \)
 - Any # of \(a \)'s followed by the same number of \(b \)'s
 - \(a^n b^n \)
 - RE?

- Example 3: \(S \rightarrow aS | T, T \rightarrow bT | U, U \rightarrow cU | \)
 - Any # of \(a \)'s, followed by any # of \(b \)'s, followed by any # of \(c \)'s
 - \(a^* b^* c^* \)

Deriving Strings

- Example 1: \(S \rightarrow abS | a \)

- Example 2: \(S \rightarrow aSb | \)

- Example 3: \(S \rightarrow aS | T, T \rightarrow bT | U, U \rightarrow cU | \)
Deriving Strings

- Example 1: $S \rightarrow abS | a$
 - a
 - ababa

- Example 2: $S \rightarrow aSb |$
 - ab
 - aaabb

- Example 3: $S \rightarrow aS | T, T \rightarrow bT | U, U \rightarrow cU |$
 - aabbbcc
 - bbc

Working Toward PLs

- Basic Arithmetic Expressions

- Boolean Expressions

Properties of Grammars - Ambiguity

- Ambiguity
 - Multiple leftmost or rightmost derivations

- Leftmost/Rightmost Derivation
 - When deriving string, always derive ___-most non-terminal first

 - Example: $S \rightarrow S$ and $S | S or S | (S) | true | false$
 - Derive ((true and false) or (false and true and true))

Leftmost Derivation

- Leftmost:
 - $S \Rightarrow$
 - $(S) \Rightarrow$
 - $(S or S) \Rightarrow$
 - $(S and S) or S) \Rightarrow$
 - $(true and S) or S) \Rightarrow$
 - $(true and false) or S) \Rightarrow$
 - $(true and false) or (S)) \Rightarrow$
 - $(true and false) or (S and S)) \Rightarrow$
 - $(true and false) or (false and S and S)) \Rightarrow$
 - $(true and false) or (false and true and S)) \Rightarrow$
 - $(true and false) or (false and true and true))$

Properties of Grammars - Ambiguity

- Is our grammar for basic boolean expressions ambiguous?
 - If so, what is an example?
Properties of Grammars - Ambiguity

- Is our grammar for basic boolean expressions ambiguous?
 - Yes; Consider the leftmost derivation of "true and true and true":
 - $S \Rightarrow S$ and $S \Rightarrow true$ and $S \Rightarrow true$ and $S \Rightarrow true$
 - $S \Rightarrow S$ and $S \Rightarrow S$ and $S \Rightarrow true$ and $S \Rightarrow true$

Designing Grammars

- Tip 1: Use recursive productions to generate an arbitrary number of symbols:
 - $A \rightarrow aA | \epsilon$ (zero or more As)
 - $B \rightarrow bB | b$ (one or more Bs)
- Tip 2: Use separate nonterminals to consider disjoint parts of a language, then combine with a production:
 - $G \rightarrow AB$
 - $A \rightarrow aA$ (grammar for a^*bb^*)
 - $B \rightarrow bB | b$
- Tip 3: To generate languages with matching, balanced, or related numbers of symbols, write productions which generate strings from the middle:
 - $S \rightarrow aSb$ ($a^n b^n$)
 - What about $a^n b^{2n}$?
- Tip 4: For a language that’s a union of other languages, use separate non-terminals for each part of the union, then combine:
 - $(a^n (b^m | c^m), m > n >= 0)$
 - $(a^n b^m, m > n >= 0) U (a^n c^m, m > n >= 0)$

Designing Grammars

- What is the grammar for this expression?
 - $S \rightarrow T | U$
 - $T \rightarrow aTb | Tb | b$ (but it’s AMBIGUOUS!)
 - $U \rightarrow aUc | Uc | c$ (consider abbb)

- Fixing ambiguity is a later topic ... any thoughts?
Practice Designing Grammars

1. \(a^x b^y \), where \(x = y \)
2. \(a^x b^y \), where \(x > y \)
3. \(a^x b^y \), where \(x = 2y \)
4. \(a^x b^y \), where \(z = x + y \)
5. All strings of \(a \) and \(b \) that are palindromes.
6. All strings of \(a \) and \(b \) that include substring “baa”.
7. All strings of \(a \) and \(b \) with an odd number of \(a \)'s and an odd number of \(b \)'s.

Practice Designing Grammars

1. \(a^x b^y \), where \(x = y \)
 1. \(S \rightarrow aSb \) |
 2. \(aL \) |
 3. \(aLb \) |
2. \(a^x b^y \), where \(x > y \)
 1. \(S \rightarrow aL \)
 2. \(L \rightarrow aL \) | \(aLb \) |
3. \(a^x b^y \), where \(x = 2y \)
 1. \(S \rightarrow aaSb \)

Practice Designing Grammars

4. \(a^x b^y a^z \), where \(z = x + y \)
 1. \(S \rightarrow aSa | L \)
 2. \(L \rightarrow bLa | \)
5. All strings of \(a \) and \(b \) that are palindromes.
 1. \(S \rightarrow aSa | bSb | L \)
 2. \(L \rightarrow a | b | \)

Practice Designing Grammars

6. All strings of \(a \) and \(b \) that include substring “baa”.
 1. \(S \rightarrow LbaaL \)
 2. \(L \rightarrow aL | bL | \) (all strings over \(a,b \))
7. All strings of \(a \) and \(b \) with an odd number of \(a \)'s and an odd number of \(b \)'s.
 1. \(S \rightarrow EaEbE | EbEaE \)
 2. \(E \rightarrow EaEaE | EbEbE | SS | \) (even # of \(a \)'s & \(b \)'s)