A Few Questions about Regular Expressions

- What does a regular expression represent?
 - Just a set of strings
- What are the basic components of r.e.’s?
 - E.g., we saw that $e+$ is the same as ee^*
- How are r.e.’s implemented?
 - We’ll see how to turn a r.e. into a program
- Can r.e.’s represent all possible languages?
 - The answer turns out to be no!
 - The languages represented by regular expressions are called, appropriately, the regular languages

Some Definitions

- An alphabet is a finite set of symbols
 - Usually denoted Σ
- A string is a finite sequence of symbols from Σ
 - ε is the empty string (“” in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5, |\varepsilon| = 0$
 - Note: \emptyset is the empty set (with 0 elements); $\emptyset \neq \{ \varepsilon \}$
- Concatenation is indicated by juxtaposition
 - If $s_1 = \text{super}$ and $s_2 = \text{hero}$, then $s_1 s_2 = \text{superhero}$
 - Sometimes also written $s_1 ; s_2$
 - For any string s, we have $s \varepsilon = \varepsilon s = s$

Languages

- A language is a set of strings over an alphabet
- Example: The set of all valid Ruby programs
 - Is there a Ruby regular expression for this language?
- Example: The set of strings of length 0 over the alphabet $\Sigma = \{a, b, c\}$
 - $\{ s \mid s \in \Sigma^* \text{ and } |s| = 0 \} = \{ \varepsilon \} \neq \emptyset$

Languages (cont’d)

- Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,)\}$
 - Give an example element of this language
 - Are all strings over the alphabet in the language?
 - Is there a Ruby regular expression for this language?
 - Is the Ruby regular expression over the same alphabet?
 - Often written Σ^*
Operations on Languages

• Let Σ be an alphabet and let L_1, L_2 be languages over Σ

• Concatenation $L_1 L_2$ is defined as

 $L_1 L_2 = \{ xy \mid x \in L_1 \text{ and } y \in L_2 \}$

 Example: $L_1 = \{ \text{"hi", "bye"} \}$, $L_2 = \{ \text{"1", "2"} \}$

 $L_1 L_2 = \{ \text{"hi1", "hi2", "bye1", "bye2"} \}$

• Union is defined as

 $L_1 \cup L_2 = \{ x \mid x \in L_1 \text{ or } x \in L_2 \}$

 Example: $L_1 = \{ \text{"hi", "bye"} \}$, $L_2 = \{ \text{"1", "2"} \}$

 $L_1 \cup L_2 = \{ \text{"hi", "bye", "1", "2"} \}$

Examples of L^n

• Let $L = \{ a, b, c \}$

• Then

 $L^0 = \{ \}$
 $L^1 = \{ a, b, c \}$
 $L^2 = \{ aa, ab, ac, ba, bb, bc, ca, cb, cc \}$

Definition of Regexps

• Given an alphabet Σ, the regular expressions over Σ are defined inductively as

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ϵ</td>
<td>${ } \epsilon$</td>
</tr>
<tr>
<td>each element $a \in \Sigma$</td>
<td>${ }$</td>
</tr>
</tbody>
</table>

Operations on Languages (cont’d)

• Define L^n inductively as

 $L^0 = \{ \}$
 $L^n = L^{n-1} L$ for $n > 0$

 In other words,

 $L^1 = L \{ \} = L$
 $L^2 = LL = LL$
 $L^3 = LL^2 = LLL$
 \ldots

• Kleene closure is defined as

 $L^* = \bigcup_{i \geq 0} L^i$

 In other words...

 L^* is the language (set of all strings) formed by concatenating together zero or more strings from L

Definition of Regexps (cont’d)

• Let A and B be regular expressions denoting languages L_A and L_B, respectively

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$(A</td>
<td>B)$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

• There are no other regular expressions for Σ

• We use '('s as needed for grouping
The Language Denoted by an r.e.

- For a regular expression e, we will write $[[e]]$ to mean the language denoted by e
 - $[[a]] = \{a\}$
 - $[[a|b]] = \{a, b\}$
- If $s = [[re]]$, we say that re accepts, describes, or recognizes s.

Which Strings Does $a^*b^*c^*$ Recognize?

<table>
<thead>
<tr>
<th>String</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabbbc</td>
<td>Yes</td>
</tr>
<tr>
<td>abb</td>
<td>Yes</td>
</tr>
<tr>
<td>ac</td>
<td>Yes</td>
</tr>
<tr>
<td>ε</td>
<td>Yes</td>
</tr>
<tr>
<td>aacb</td>
<td>No</td>
</tr>
<tr>
<td>abcd</td>
<td>No</td>
</tr>
</tbody>
</table>

Example 1

- All strings over $\Sigma = \{a, b, c\}$ such that all the a's are first, the b's are next, and the c's last
 - Example: $aabbbc$ but not abc b
- Regexp: $a^*b^*c^*$
 - This is a valid regexp because...
 - a is a regexp $[[a]] = \{a\}$
 - a^* is a regexp $[[a^*]] = \{\varepsilon, a, aa, ...\}$
 - Similarly for b^* and c^*
 - So $a^*b^*c^*$ is a regular expression

Example 2

- All strings over $\Sigma = \{a, b, c\}$
- Regexp: $(a|b|c)^*$
- Other regular expressions for the same language?
 - $(c|b|a)^*$
 - $(a^*b^*c^*)^*$
 - $(a|b|c)^*(abc)$
 - etc.

Example 3

- All whole numbers containing the substring 330
- Regular expression: $(0|1)...|9)^*330(0|1)...|9)^*$
- What if we want to get rid of leading 0's?
 - $(1...|9)(0|1)...|9)*330(0|1)...|9)^*$
 - $330(0|1)...|9)^*$
- Any other solutions?
 - What about all whole numbers not containing the substring 330?
 - Is it recognized by a regexp?

Example 4

- What language does $(10|0)^*(10|1)^*$ denote?
 - $(10|0)^*$
 - 0 may appear anywhere
 - 1 must always be followed by 0
 - $(10|1)^*$
 - 1 may appear anywhere
 - 0 must always be preceded by 1
- Put together, all strings of 0's and 1's where every pair of adjacent 0's precedes any pair of adjacent 1's
What Strings are in \((10|0)^*(10|1)^*\)?

\[
\begin{align*}
00101000 & \quad 11011101 \\
& \text{First part in } \left[\left[(10|0)^*\right]\right] \\
& \text{Second part in } \left[\left[(10|1)^*\right]\right] \\
& \text{Notice that } 0010 \text{ also in } \left[\left[(10|0)^*\right]\right] \\
& \text{But remainder of string is not in } \left[\left[(10|1)^*\right]\right]
\end{align*}
\]

0010101
Yes
101
Yes
011001
No

Example 5

- What language does this regular expression recognize?
 \(\left((1|0)(0|1)[9] \right) \cup (2(0|123)) \cup (0|1)[5](0|1)[9]\)

- All valid times written in 24-hour format:
 - 10:17
 - 23:59
 - 0:45
 - 8:30

Two More Examples

- \((000|001)^*\)
 - Any string of 0’s and 1’s with no single 0’s

- \((0000000)^*\)
 - Strings with an even number of 0’s
 - Notice that some strings can be accepted more than one way
 - 000000 = 00 00 00 = 00 00 00 = 00 00 00

Regular Languages

- The languages that can be described using regular expressions are the \textit{regular languages} or \textit{regular sets}
- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over \(\Sigma\)
 - \(\{a^n b^n \mid n > 0\}\) \(a^n = \text{sequence of } n \text{ a's}\)

Almost all programming languages are not regular
- But aspects of them sometimes are (e.g., identifiers)
- Regular expressions are commonly used in parsing tools

Ruby Regular Expressions

- Almost all of the features we’ve seen for Ruby re.’s can be reduced to this formal definition
 - /Ruby/ – concatenation of single-character re.’s
 - /Ruby(Ruby)/ – union
 - /Ruby\/* – Kleene closure
 - /Ruby+s/ – same as (Ruby)(Ruby)*
 - /Ruby/? – same as \(\epsilon\text{?}(\text{Ruby})\) (i.e. 1\(\epsilon\))
 - /[a-z]/ – same as \(\{a|b|c|…|z\}\)
 - /[^0-9]/ – same as \(\{a|b|c|…\} \text{ for } a,b,c,… \in \Sigma - \{0,9\}\)
 - \^, $ – correspond to extra characters in alphabet

Implementing Regular Expressions

- We can implement regular expressions by turning them into a \textit{finite automaton}
 - A “machine” for recognizing a regular language
Example

- Machine starts in \textit{start} or \textit{initial} state
- Repeat until the end of the string is reached:
 - Scan the next symbol \(s\) of the string
 - Take transition edge labeled with \(s\)
- The string is \textit{accepted} if the automaton is in a \textit{final} or \textit{accepting} state when the end of the string is reached

Example

- \(001011\) \hspace{1cm} \text{accepted}

What Language is This?

- All strings over \((0, 1)\) that end in 1
- What is a regular expression for this language?\((01)^*1\)

Formal Definition

- A \textit{deterministic finite automaton (DFA)} is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta: Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions
 - What's this definition saying that \(\delta\) is?

More on DFAs

- An FSA can have more than one final state:
- A string is accepted as long as there is at least one path to a final state
Our Example, Formally

- $\Sigma = \{0, 1\}$
- $Q = \{S_0, S_1\}$
- $q_0 = S_0$
- $F = \{S_1\}$
- δ

<table>
<thead>
<tr>
<th>S_0</th>
<th>S_0</th>
<th>S_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>S_1</td>
<td>S_0</td>
<td>S_1</td>
</tr>
</tbody>
</table>

Another Example

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S_2</td>
<td>Y</td>
</tr>
<tr>
<td>acc</td>
<td>S_2</td>
<td>Y</td>
</tr>
<tr>
<td>bbc</td>
<td>S_2</td>
<td>Y</td>
</tr>
<tr>
<td>aabbb</td>
<td>S_1</td>
<td>Y</td>
</tr>
<tr>
<td>aa</td>
<td>S_0</td>
<td>Y</td>
</tr>
<tr>
<td>ϵ</td>
<td>S_0</td>
<td>Y</td>
</tr>
<tr>
<td>acba</td>
<td>S_3</td>
<td>N</td>
</tr>
</tbody>
</table>

(a,b,c notation shorthand for three self loops)

Another Example (cont’d)

What language does this DFA accept? $a^*b^*c^*$

S_3 is a dead state – a nonfinal state with no transition to another state

Shorthand Notation

• If a transition is omitted, assume it goes to a dead state that is not shown

What Lang. Does This DFA Accept?

$a^*b^*c^*$ again, so DFAs are not unique

Non-deterministic Finite Automata (NFA)

• An NFA is a 5-tuple (Σ, Q, q_0, F, δ) where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of final states
 - $\delta \subseteq Q \times(\Sigma\cup\{\epsilon\}) \times Q$ specifies the NFA's transitions
 - Transitions on ϵ are allowed – can optionally take these transitions without consuming any input
 - Can have more than one transition for a given state and symbol
 - An NFA accepts s if there is at least one path from its start to final state on s
Example DFA

- S_0 = "Haven’t seen anything yet"
- S_1 = "Last symbol seen was an a"
- S_2 = "Last two symbols seen were ab"
- S_3 = "Last three symbols seen were abb"

- Language?
- $(a|b)^*abb$

NFA for $(a|b)^*abb$

- ba
 - Has paths to either S_0 or S_1
 - Neither is final, so rejected
- $babaabb$
 - Has paths to different states
 - One leads to S_3, so accepted

Another example DFA

- Language?
- $(ab|aba)^*$

NFA for $(ab|aba)^*$

- aba
 - Has paths to states S_0, S_1
- $ababa$
 - Has paths to S_0, S_1
 - Need to use ϵ-transition

Relating R.E.’s to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!

Reducing Regular Expressions to NFAs

- Goal: Given regular expression e, construct NFA $<e> = (\Sigma, Q, q_0, F, \delta)$
 - Remember r.e. defined recursively from primitive r.e. languages
 - Invariant: $|F| = 1$ in our NFAs
- Base case: a

 $<a> = ((a), \{S_0, S_1\}, S_0, \{S_1\}, \{(S_0, a, S_1)\})$
Reduction (cont’d)

- Base case: ε

$$<\varepsilon> = (\varepsilon, \{S0\}, S0, \{S0\}, \varnothing)$$

- Base case: \varnothing

$$<\varnothing> = (\varnothing, \{S0, S1\}, S0, \{S1\}, \varnothing)$$

Reduction (cont’d)

- Induction: $A B$

$$<A>$$
$$$$

- $<A> = (\Sigma_A, Q_A, q_A, \delta_A, f_A)$
- $ = (\Sigma_B, Q_B, q_B, \delta_B)$
- $<AB> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_0, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_A), (f_B, \varepsilon, S1)\})$

Reduction (cont’d)

- Induction: (A|B)

- $<A*$

- $<A*> = (\Sigma_A, Q_A, q_A, \delta_A)$
- $<B*> = (\Sigma_B, Q_B, q_B, \delta_B)$
- $<A|B*> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{(S0, \varepsilon, q_A), (S1, \varepsilon, q_B)\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, S1), (f_B, \varepsilon, S1)\})$
Reduction (cont’d)

- Induction: A^*

$<A> = (\Sigma, Q_A, q_0, \delta_A)$

$<A^*> = (\Sigma, Q_A \cup \{S_0, S_1\}, S_0, \{S_1\},\delta_A \cup \{(f_0, \epsilon, S_1), (S_0, \epsilon, q_1), (S_0, \epsilon, S_1), (S_1, \epsilon, S_0)\})$

Relating R.E.’s to DFAs and NFAs

Equivalence of DFAs and NFAs

- Let subsets of states be states in DFA
- Keep track of which subset you can be in

- Any string from (A) to either (D) or (CD) represents a path from A to D in the original NFA.

How NFA Works

- When NFA processes a string
 - NFA may be in several possible states
 - Multiple transitions with same label
 - ϵ-transitions
- Example
 - After processing “a”
 - NFA may be in states S_1, S_2, S_3

Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states
- Example

Reduction Complexity

- Given a regular expression A of size n...
 - Size = # of symbols + # of operations
- How many states does $<A>$ have?
 - $O(n)$
 - That’s pretty good!
- NFA to DFA reduction
 - Intuition: Build DFA where each DFA state represents a set of NFA states
 - Given NFA with n states, DFA may have 2^n states
 - Not so good, since DFAs are what we can implement easily

Can transform

Can transform

Can transform

can transform
Reducing NFA to DFA (cont.)

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA (Σ, Q, q₀, Fₙ, δ)
 - Output
 - DFA (Σ, R, r₀, Fₕ, δ)
 - Using
 - ε-closure(p)
 - move(p, a)

ε-transitions and ε-closure

- We say p ~ₚ q
 - If it is possible to go from state p to state q by taking only ε-transitions
 - If ∃ p, p₁, p₂, ..., pₙ, q ∈ Q such that
 - (p, ε, p₁) ∈ δ, (p₁, ε, p₂) ∈ δ, ..., (pₙ, ε, q) ∈ δ

- ε-closure(p)
 - Set of states reachable from p using ε-transitions alone
 - Set of states q such that p ~ₚ q
 - ε-closure(p) = {q | p ~ₚ q }
 - Note
 - ε-closure(p) always includes p
 - ε-closure() may be applied to set of states (take union)

ε-closure: Example 1

- Following NFA contains
 - S₁ ~ₚ S₂
 - S₂ ~ₚ S₃
 - S₁ ~ₚ S₃

- ε-closures
 - ε-closure(S₁) = { S₁, S₂, S₃ }
 - ε-closure(S₂) = { S₂, S₃ }
 - ε-closure(S₃) = { S₃ }
 - ε-closure({ S₁, S₂ }) = { S₁, S₂, S₃ } ∪ { S₂, S₃ }

ε-closure: Example 2

- Following NFA contains
 - S₁ ~ₚ S₃
 - S₃ ~ₚ S₂
 - S₁ ~ₚ S₂

- ε-closures
 - ε-closure(S₁) = { S₁, S₂, S₃ }
 - ε-closure(S₂) = { S₂ }
 - ε-closure(S₃) = { S₂, S₃ }
 - ε-closure({ S₂, S₃ }) = { S₂ } ∪ { S₂, S₃ }

ε-closure: Practice

- Find ε-closures for following NFA

- Find ε-closures for the NFA you construct for
 - The regular expression (0|1)*111(0*|1)

Calculating move(p,a)

- move(p, a)
 - Set of states reachable from p using exactly one transition on a
 - Set of states q such that (p, a, q) ∈ δ
 - move(p, a) = {q | (p, a, q) ∈ δ }
 - Note move(p, a) may be empty ∅
 - If no transition from p with label a
move(a,p) : Example 1

- Following NFA
 - $\Sigma = \{a, b\}$

- Move
 - $\text{move}(S1, a) = \{S2, S3\}$
 - $\text{move}(S1, b) = \emptyset$
 - $\text{move}(S2, a) = \emptyset$
 - $\text{move}(S2, b) = \{S3\}$
 - $\text{move}(S3, a) = \emptyset$
 - $\text{move}(S3, b) = \emptyset$

NFA \rightarrow DFA Reduction Algorithm

- Input NFA $(\Sigma, Q, q_0, F_n, \delta)$, Output DFA $(\Sigma, R, r_0, F_d, \delta)$
- Algorithm
 - Let $r_0 = \varepsilon$-closure(q_0), add it to R // DFA start state
 - While // an unmarked state $r \in R$
 - Mark r // each state visited once
 - For each $a \in \Sigma$
 - Let $S = \{ q \mid q \in r \& \text{move}(q,a) = s \}$
 - if states reached via a
 - Let $e = \varepsilon$-closure(S) // states reached via ε
 - if $e \in R$
 - Let $R = e \cup R$ // add e to R (unmarked)
 - Let $\delta = \delta \cup (r, a, e)$ // add transition $r \rightarrow e$
 - Let $F_d = \{ r \mid \exists s \in r \text{ with } s \in F_n \}$ // final if include state in F_n

move(a,p) : Example 2

- Following NFA
 - $\Sigma = \{a, b\}$

- Move
 - $\text{move}(S1, a) = \emptyset$
 - $\text{move}(S1, b) = \{S2\}$
 - $\text{move}(S2, a) = \{S3\}$
 - $\text{move}(S2, b) = \emptyset$
 - $\text{move}(S3, a) = \emptyset$
 - $\text{move}(S3, b) = \emptyset$

NFA \rightarrow DFA Example 1

- Start = ε-closure$(S1) = \{S1,S3\}$
- $r_0 = \emptyset$
- $r = \{S1,S3\}$
- Move$((S1,S3), a) = \{S2\}$
 - $e = \varepsilon$-closure$(S2) = \{S2\}$
 - $R = R \cup \{S2\} = \{S1,S3, S2\}$
 - $\delta = \delta \cup (\{S1,S3\}, a, \{S2\})$
- Move$((S1,S3), b) = \emptyset$

NFA \rightarrow DFA Example 1 (cont.)

- $R = \{S1,S3\}$
 - $r = \{S3\}$
 - $\text{move}(S3, a) = \emptyset$
 - $\text{move}(S3, b) = \emptyset$
 - $F_d = \{S1,S3\}$
- Since $S3 \in F_d$
- Done!
NFA → DFA Example 2

- NFA

- DFA

\[R = \{ [A], [B, D], [C, D] \} \]

Equivalence of DFAs and NFAs

- Any string from (A) to either (D) or (CD)
 - Represents a path from A to D in the original NFA

Minimizing DFA

- Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape

Minimizing DFA: Hopcroft Reduction

- Intuition
 - Look for states that can be distinguish from each other
 - End up in different accept / non-accept state with identical input
- Algorithm
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states \(x, y \) belong in same partition if and only if for all symbols in \(\Sigma \), they transition to the same partition
 - Update transitions & remove dead states
Splitting Partitions

- No need to split partition \(\{S,T,U,V\} \)
 - All transitions on \(a \) lead to identical partition \(P_2 \)
 - Even though transitions on \(a \) lead to different states

Splitting Partitions (cont.)

- Need to split partition \(\{S,T,U\} \) into \(\{S,T\}, \{U\} \)
 - Transitions on \(a \) from \(S,T \) lead to partition \(P_2 \)
 - Transition on \(a \) from \(R \) lead to partition \(P_3 \)

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \(\{S,T,U\} \)
 - After splitting partition \(\{X,Y\} \) into \(\{X\}, \{Y\} \)
 - Need to split partition \(\{S,T,U\} \) into \(\{S,T\}, \{U\} \)

Minimizing DFA: Example 1

- DFA
 - Initial partitions
 - Accept \(\{ R \} \) → \(P_1 \)
 - Reject \(\{ S, T \} \) → \(P_2 \)
 - Split partition? → Not required, minimization done
 - \(\text{move}(S,a) = T \rightarrow P_2 \)
 - \(\text{move}(S,b) = R \rightarrow P_1 \)
 - \(\text{move}(T,a) = T \rightarrow P_2 \)
 - \(\text{move}(T,b) = R \rightarrow P_1 \)

Minimizing DFA: Example 2

- DFA
 - Initial partitions
 - Accept \(\{ R \} \) → \(P_1 \)
 - Reject \(\{ S, T \} \) → \(P_2 \)
 - Split partition? → Not required, minimization done
 - \(\text{move}(S,a) = T \rightarrow P_2 \)
 - \(\text{move}(S,b) = R \rightarrow P_1 \)
 - \(\text{move}(T,a) = S \rightarrow P_2 \)
 - \(\text{move}(T,b) = R \rightarrow P_1 \)

Minimizing DFA: Example 3

- DFA
 - Initial partitions
 - Accept \(\{ R \} \) → \(P_1 \)
 - Reject \(\{ S, T \} \) → \(P_2 \)
 - Split partition? → Yes, different partitions for \(B \)
 - \(\text{move}(S,a) = T \rightarrow P_2 \)
 - \(\text{move}(S,b) = T \rightarrow P_2 \)
 - \(\text{move}(T,a) = T \rightarrow P_2 \)
 - \(\text{move}(T,b) = R \rightarrow P_1 \)
 - DFA already minimal
Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA

 ![Example DFA Diagram](image)

Complement of DFA (cont.)

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state
- Note this only works with DFAs
 - Why not with NFAs?

Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.

![Practice DFA Diagram](image)

Relating REs to DFAs and NFAs

- Why do we want to convert between these?
 - Can make it easier to express ideas
 - Can be easier to implement

Implementing DFAs

It's easy to build a program which mimics a DFA

![Implementing DFAs](image)

Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA

```java
Given components $(E, Q, q_0, F)$ of a DFA:
let q = q_0
while (there exists another symbol s of the input string)
    s = inputSymbol()
    q = E(q, s)
if q $\in F$
    accept
else
    reject
```

- q is just an integer
- Represent E using arrays or hash tables
- Represent F as a set
Relating R.E.'s to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!

Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA

Run Time of Algorithm

- Given a string s, how long does algorithm take to decide whether s is accepted?
 - Assume we can compute $\delta(q_0, c)$ in constant time
 - Then the time per string s to determine acceptance is $O(|s|)$
 - Can't get much faster!

- But recall that constructing the DFA from the regular expression A may take $O(2^{|A|})$ time
 - But this is usually not the case in practice

- So there's the initial overhead, but then accepting strings is fast

Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_0, q_0, (f_1), \delta_1)$, the components of the DFA produced from the r.e.

- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases

- Disadvantages: nonstandard, plus can have higher complexity