Motivation

- Programs are just strings of text
 - But they’re strings that have a certain structure

- Informal description of syntax of a C program
 - A C program is a list of declarations and definitions
 - A function definition contains parameters and a body
 - A function body is a sequence of statements
 - A statement is an expression, if, goto, etc.
 - An expression may be assignment, addition, subtraction, etc.

Motivation (cont’d)

- We want to describe program structure precisely

- Regular expressions are not enough
 - No regular expression for balanced pairs of ()’s
 - ("0", "0(0)", "0(0)"...) is not a regular language

- Instead, we’ll use context-free grammars
 - These are almost enough for C, C++, Java

Context-Free Grammars (CFGs)

- But CFGs can do a lot more!
 - $S \rightarrow \{ S \} \varepsilon$ // generates balanced pairs of ()’s

- In fact, CFGs subsume REs, DFAs, NFAs
 - There is a CFG that generates any regular language
 - But REs are a better notation for regular languages

- CFGs can specify programming language syntax
 - CFGs (mostly) describe the parsing process

Formal Definition

- A context-free grammar G is a 4-tuple:
 - Σ – a finite set of terminal or alphabet symbols
 - Often written in lowercase
 - N – a finite, nonempty set of nonterminal symbols
 - Often written in uppercase
 - It must be that $N \cap \Sigma = \emptyset$
 - P – a set of productions of the form $N \rightarrow (\Sigma|N)^*$
 - Informally this means that the nonterminal can be replaced by the string of zero or more terminals or nonterminals to the right of the \rightarrow
 - Can think of productions as rewriting rules
 - $S \in N$ – the start symbol
Backus-Naur Form

- Context-free grammar production rules are also called Backus-Naur Form or BNF
 - A production like \(A \to B \cdot C \cdot D \) is written in BNF as \(A \ := \ B \cdot C \cdot D \) (Non-terminals written with angle brackets and \(:= \) instead of \(\to \))
 - Often used to describe language syntax
- BNF was designed by
 - John Backus
 - Chair of the Algol committee in the early 1960s
 - Peter Naur
 - Secretary of the committee, who used this notation to describe Algol in 1962

Informal Definition of Acceptance

- A string is accepted by a CFG if there is
 - Some sequence of applying productions (rewrites) starting at the start symbol that generates the string
- Example
 - Grammar: \(S \to 0S \mid 1S \mid \epsilon \)
 - Sequence generating the string 010
 \[S \to 0S \to 01S \to 010 \]
- Terminology
 - Such a sequence of rewrites is a derivation or parse
 - Discovering the derivation is called parsing

Derivations

- Notation
 \(\Rightarrow \) indicates a derivation of one step
 \(\Rightarrow^+ \) indicates a derivation of one or more steps
 \(\Rightarrow^* \) indicates a derivation of zero or more steps
- Example
 \(S \Rightarrow 0S \mid 1S \mid \epsilon \)
- For the string 010
 \(S \Rightarrow 0S \Rightarrow 01S \Rightarrow 010 \)
 \(S \Rightarrow^+ 010 \)
 \(S \Rightarrow^* S \)

Example

\[
\begin{align*}
S & \to aS \mid T \\
T & \to bT \mid U \\
U & \to U \epsilon \\
\end{align*}
\]

- A derivation:
 \(S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU \Rightarrow ac \)
 - Abbreviated as \(S \Rightarrow^+ ac \)
 \(S \Rightarrow T \Rightarrow U \Rightarrow \epsilon \)
- Is there any derivation
 \(S \Rightarrow^+ ccc \) ? \(S \Rightarrow^* Sa \) ?
 \(S \Rightarrow^+ bab \) ? \(S \Rightarrow^* bU \) ?

Practice

- Try to make a grammar which accepts
 \(0^*1^* \) \(0^*1^m \) where \(n \geq 0 \)
 \(0^m1^n \) where \(m \leq n \)
 \(S \to A \mid B \\
A \to 0A \mid \epsilon \\
S \to 0S1 \mid \epsilon \\
S \to 0S1 \mid 0S \epsilon \\
B \to 1B \mid \epsilon \\
\)
- Give some example strings from this language
 \(S \to 0 \mid 1S \)
 \(0, 10, 110, 1110, 11110, \ldots \)
 - What language is it?
 \(1^*0 \)

Example (cont’d)

\[
\begin{align*}
S & \to aS \mid T \\
T & \to bT \mid U \\
U & \to U \epsilon \\
\end{align*}
\]

- Generates what language?
- Do other grammars generate this language?
 \(S \to ABC \\
A \to 0A \mid \epsilon \\
B \to bB \mid \epsilon \\
C \to cC \mid \epsilon \)
 - So grammars are not unique
Example: Arithmetic Expressions (Limited)

- $E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E)$
- An expression E is either a letter a, b, or c
- Or an E followed by $+$ followed by an E
- etc.

- This describes or generates a set of strings
 - $\{a, b, c, a+b, a+a, a\cdot c, a-(b\cdot a), c\cdot(b+d)\}$

- Example strings not in the language
 - $d, c(a), b^*c$, etc.

Example, Formally

- Formally, the grammar we just showed is

 $\Sigma = \{+, -, *, (,), a, b, c\}$ // terminals

 $N = \{E\}$ // nonterminals

 $P = \{E \rightarrow a, E \rightarrow b, E \rightarrow c, E \rightarrow E+E, E \rightarrow E-E, E \rightarrow E*E, E \rightarrow (E)\}$ // productions

 $S = E$ // start symbol

Uniqueness of Grammars

- Grammars are not unique
 - Different grammars can generate same set of strings

- Following grammar generates the same set of strings as the previous grammar:

 $E \rightarrow E+E \mid E-E \mid E*E \mid (E)$

 $T \rightarrow T*P \mid P$

 $P \rightarrow (E) \mid a \mid b \mid c$

Notational Shortcuts

- A production is of the form
 - left-hand side (LHS) \rightarrow right hand side (RHS)

- If not specified
 - Assume LHS of first listed production is the start symbol

- Productions with the same LHS
 - Are usually combined with \mid

- If a production has an empty RHS
 - It means the RHS is ϵ

Sentential Forms and Derivations

- A sentential form is a string of terminals and nonterminals produced from that start symbol

- Inductively
 - The start symbol is a sentential form for a grammar
 - If $\alpha\delta$ is a sentential form for a grammar, where α and $\delta \in (\Sigma^* \cup \Gamma^*)$, and $A \rightarrow \gamma$ is a production, then $\alpha\gamma\delta$ is a sentential form for the grammar
 - In this case, we say that $\alpha\delta$ derives $\alpha\gamma\delta$ in one step, which is written as $\alpha\delta \Rightarrow \alpha\gamma\delta$

Sentential Forms Example

- Given grammar

 $S \rightarrow 0S \mid 1S \mid \epsilon$

- Possible derivations

 $S \Rightarrow 0S \Rightarrow 01S \Rightarrow 010S \Rightarrow 010$

 $S \Rightarrow 1S \Rightarrow 11S \Rightarrow 111S \Rightarrow 111$

 $S \Rightarrow \epsilon$

- In other words

 - If $S \Rightarrow^* \alpha$, then α is a sentential form
The Language Generated by a CFG

- The language generated by a grammar \(G \) is

\[
L(G) = \{ \omega \mid \omega \in \Sigma^* \text{ and } S \Rightarrow^* \omega \}
\]

- \(S \) is the start symbol of the grammar
- \(\Sigma \) is the alphabet for that grammar

- In other words
 - All sentential forms with only terminals
 - All strings over \(\Sigma \) that can be derived from the start symbol via one or more productions

Parse Trees

- A parse tree shows how a string is produced by a grammar
 - Root node is the start symbol
 - Each interior node is a nonterminal
 - Children of node are symbols on r.h.s of production applied to that nonterminal
 - Leaves are all terminal symbols

- Reading the leaves left-to-right shows the string corresponding to the tree

Example

\[
S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU \Rightarrow ac
\]

Leftmost and Rightmost Derivation

- Leftmost derivation
 - Leftmost nonterminal is replaced in each step
- Rightmost derivation
 - Rightmost nonterminal is replaced in each step

Example

- Grammar
 - \(S \Rightarrow AB, A \Rightarrow a, B \Rightarrow b \)
 - Leftmost derivation for “ab”
 - \(S \Rightarrow AB \Rightarrow aB \Rightarrow ab \)
 - Rightmost derivation for “ab”
 - \(S \Rightarrow AB \Rightarrow Ab \Rightarrow ab \)

Parse Tree For Derivations

- Parse tree may be same for both leftmost & rightmost derivations
 - Example Grammar: \(S \rightarrow a \mid SbS \) String: \(ab \)
 - Leftmost Derivation
 \[
 S \Rightarrow SbS \Rightarrow abS \Rightarrow aba
 \]
 - Rightmost Derivation
 \[
 S \Rightarrow SbS \Rightarrow Sba \Rightarrow aba
 \]
 - Parse trees don’t show order productions are applied
 - Every parse tree has a unique leftmost and a unique rightmost derivation

Parse Tree For Derivations (cont.)

- Not every string has a unique parse tree
 - Example Grammar: \(S \rightarrow a \mid SbS \) String: \(ababa \)
 - Leftmost derivation
 \[
 S \Rightarrow SbS \Rightarrow abS \Rightarrow abSbS \Rightarrow ababS \Rightarrow ababa
 \]
 - Another leftmost derivation
 \[
 S \Rightarrow SbS \Rightarrow SbSbS \Rightarrow abSbS \Rightarrow ababS \Rightarrow ababa
 \]
Ambiguity

- A grammar is ambiguous if a string may have multiple leftmost (or rightmost) derivations
 - Equivalent to multiple parse trees
 - Can be hard to determine

1. \(S \rightarrow aS | T \)
 \(T \rightarrow bT | U \)
 \(U \rightarrow cU | \epsilon \)
 - No

2. \(S \rightarrow SS | () | (S) \)
 - ?

More on Leftmost/Rightmost Derivations

- Is the following derivation leftmost or rightmost?
 - Both! At most one non-terminal in each sentential form, so there’s no choice which non-terminals to expand

- How about the following derivation?
 - \(S \rightarrow bS \rightarrow bSbS \rightarrow SbabS \rightarrow ababS \rightarrow ababa \)
 - Neither! Selects left, center, left, and rightmost nonterminals

Tips for Designing Grammars

1. Use recursive productions to generate an arbitrary number of symbols
 - \(A \rightarrow xA | \epsilon \) Zero or more \(x \)'s
 - \(A \rightarrow yA | y \) One or more \(y \)'s

2. Use separate nonterminals to generate disjoint parts of a language, and then combine in a production
 - \(G = S \rightarrow AB \)
 - \(A \rightarrow aA | \epsilon \)
 - \(B \rightarrow bB | \epsilon \)
 - \(L(G) = a^*b^* \)

Tips for Designing Grammars (cont’d)

3. To generate languages with matching, balanced, or related numbers of symbols, write productions which generate strings from the middle
 - \(\{ a^n b^n | n \geq 0 \} \) (not a regular language!)
 - \(S \rightarrow aSb | \epsilon \)
 - Example: \(S \rightarrow aSb \rightarrow aSbb \rightarrow abbb \)
 - \(\{ a^n b^n | n \geq 0 \} \)
 - \(S \rightarrow aSbb | \epsilon \)

Tips for Designing Grammars (cont’d)

- \(\{ a^n b^n | m \geq 2n, n \geq 0 \} \)
 - \(S \rightarrow aSbb | B | \epsilon \)
 - \(B \rightarrow bB | b \)

The following grammar also works:
- \(S \rightarrow aSbb | B \)
 - \(B \rightarrow bB | \epsilon \)

How about the following?
- \(S \rightarrow aSbb | BS | \epsilon \)
Tips for Designing Grammars (cont’d)

\{ a^n b^m | n \geq 0, m \geq 0 \}
Rewrite as \(a^n b^n a^m \), which now has matching superscripts (two pairs)

Would this grammar work?
\begin{align*}
S & \rightarrow aSa | B \\
B & \rightarrow bBa | ba
\end{align*}

Corrected:
\begin{align*}
S & \rightarrow aSa | B \quad \text{The outer } a^n a^n \text{ are generated first,} \\
B & \rightarrow bBa | \epsilon \quad \text{then the inner } b^n a^m
\end{align*}

Tips for Designing Grammars (cont’d)

4. For a language that’s the union of other languages, use separate nonterminals for each part of the union and then combine
\[
\{ a^n (b^m | c^m) | m > n \geq 0 \}
\]
Can be rewritten as
\[
\{ a^n b^m | m > n \geq 0 \} \cup \\
\{ a^n c^m | m > n \geq 0 \}
\]

Tips for Designing Grammars (cont’d)

\{ a^n b^m | m > n \geq 0 \} \cup \{ a^n c^m | m > n \geq 0 \}

Will this fix the ambiguity?
\begin{align*}
S & \rightarrow T | U \\
T & \rightarrow aTb | Tb | b \\
U & \rightarrow aUc | Uc | c
\end{align*}

- It’s not ambiguous, but it can generate invalid strings such as \(babb \)

Tips for Designing Grammars (cont’d)

\{ a^n b^m | m > n \geq 0 \} \cup \{ a^n c^m | m > n \geq 0 \}

Unambiguous version
\begin{align*}
S & \rightarrow T | V \\
T & \rightarrow aTb | U \\
U & \rightarrow Ub | b \\
V & \rightarrow aVc | W \\
W & \rightarrow Wc | c
\end{align*}

CFGs for Languages

- Recall that our goal is to describe programming languages with CFGs
 - We had the following example which describes limited arithmetic expressions
 \[
 E \rightarrow a | b | c | E+E | E-E | E^E | (E)
 \]
 - What’s wrong with using this grammar?
 - It’s ambiguous!
Example: a-b-c

\[
E \rightarrow E \rightarrow a \rightarrow E \rightarrow E \rightarrow \text{a-b} \rightarrow \text{c}
\]

Corresponds to a-(b-c)

\[
E \rightarrow E \rightarrow a \rightarrow E \rightarrow c \rightarrow \text{b}
\]

Corresponds to (a-b-c)

Corresponds to (a-b-c)

Corresponds to (a-b)c

Another Example: If-Then-Else

\[
\text{<stmt> ::= <assignment> | <if-stmt> | ...}
\]

\[
\text{<if-stmt> ::= if \text{ (<expr>) <stmt> |}
\]

\[
\text{if \text{ (<expr>) <stmt> else <stmt>}
\]

- (Here <>'s are used to denote nonterminals and ::= for productions)

- Consider the following program fragment:

  ```
  if (x > y)  
  if (x < z)  
  a = 1;  
  else a = 2;
  ```

- Note: Ignore newlines

Parse Tree #1

- Else belongs to inner if

Parse Tree #2

- Else belongs to outer if

Dealing With Ambiguous Grammars

- Ambiguity is bad
 - Syntax is correct
 - But semantics differ depending on choice
 - Different associativity (a-b)-c vs. a-(b-c)
 - Different precedence (a-b)c vs. a-(b-c)
 - Different control flow if (if else) vs. if (if) else

- Two approaches
 - Rewrite grammar
 - Use special parsing rules
 - Depending on parsing method (learn in CMSC 430)
Fixing the Expression Grammar

- Idea: Require that the right operand of all of the operators not have an operator it in, unless it’s parenthesized
 \[E \rightarrow E \cdot T \mid E \cdot T \mid E \cdot T \mid T \]
 \[T \rightarrow a \mid b \mid c \mid (E) \]

- Now only one parse tree for \(a \cdot b \cdot c \)
 - Left associative
 - Exercise: Give a derivation for the string \(a \cdot (b \cdot c) \)

What if We Wanted Right-Associativity?

- Left-recursive productions are used for left-associative operators
- Right-recursive productions are used for right-associative operators
- Left:
 \[E \rightarrow E \cdot T \mid E \cdot T \mid E \cdot T \mid T \]
 \[T \rightarrow a \mid b \mid c \mid (E) \]
- Right:
 \[E \rightarrow T \cdot E \mid T \cdot E \mid T \cdot E \mid T \]
 \[T \rightarrow a \mid b \mid c \mid (E) \]

Parse Tree Shape

- The kind of recursion/associativity determines the shape of the parse tree
 - Left recursion
 - Right recursion

- Exercise: draw a parse tree for \(a \cdot b \cdot c \) in the prior grammar in which subtraction is right-associative

A Different Problem

- How about the string \(a + b \cdot c \)?
 \[E \rightarrow E \cdot T \mid E \cdot T \mid E \cdot T \mid T \]
 \[T \rightarrow a \mid b \mid c \mid (E) \]
- Doesn’t have correct precedence for \(\cdot \)
 - When a nonterminal has productions for several operators, they effectively have the same precedence
- How can we fix this?

Final Expression Grammar

- Exercises:
 - Construct tree and left and right derivations for \(a + b \cdot c \), \(a \cdot b + c \), \(a \cdot b \cdot c \), \(a + b + c \)
 - See what happens if you change the last set of productions to \(P \rightarrow a \mid b \mid c \mid E \mid (E) \)
 - See what happens if you change the first set of productions to \(E \rightarrow E \cdot T \mid E \cdot T \mid T \mid P \)

Regular expressions and CFGs

- Programming languages are neither regular nor context-free
 - Usually almost context-free, with some hacks
Pushdown Automaton (PDA)

- A pushdown automaton (PDA) is an abstract machine similar to the DFA
 - Has a finite set of states
 - Also has a pushdown stack
- Moves of the PDA are as follows:
 - An input symbol is read and the top symbol on the stack is read
 - Based on both inputs, the machine
 - Enters a new state, and
 - Writes zero or more symbols onto the pushdown stack
 - String accepted if the stack is empty at end of string

Power of PDAs

- PDAs are more powerful than DFAs
 - a^nb^n, which cannot be recognized by a DFA, can easily be recognized by the PDA
 - Stack all a symbols and, for each b, pop an a off the stack.
 - If the end of input is reached at the same time that the stack becomes empty, the string is accepted
- As with NFA, we can also have a NDPDA
 - NDPDA are more powerful than DPDA
 - NDPDA can recognize even length palindromes over $\{0,1\}^*$, but a DPDA cannot. Why? (Hint: Consider palindromes over $\{0,1\}^2\{0,1\}^*$)
 - It is true, but less clear, that the languages accepted by NDPDAs are equivalent to the context-free languages

Steps of Compilation

- Source program → Compiler → Target program

- Lexing → Parsing → Intermediate Code Generation → Optimization

Parsing

- There are many efficient techniques for turning strings into parse trees or ASTs
 - They all have strange names, like LL(k), SLR(k), LR(k)...
 - Take CMSC 430 for more details
- We will look at one very simple technique: recursive descent parsing
 - This is a “top-down” parsing algorithm because we’re going to begin at the start symbol and try to produce the string

Recursive Descent Parsing

- Goal
 - Determine if we can produce the string to be parsed from the grammar’s start symbol
- Approach
 - Recursively replace nonterminal with RHS of production
- At each step, we’ll keep track of two facts
 - What tree node are we trying to match?
 - What is the lookahead (next token of the input string)?
 - Helps guide selection of production used to replace nonterminal

Recursive Descent Parsing (cont.)

- At each step, 3 possible cases
 - If we’re trying to match a terminal
 - If the lookahead is that token, then succeed, advance the lookahead, and continue
 - If we’re trying to match a nonterminal
 - Pick which production to apply based on the lookahead
 - Otherwise fail with a parsing error
Example

E → id = n | { L }
L → E ; L | ε

• One input might be
 – \{ x = 3 ; \ y = 4 ; \}

Recursive Descent Parsing (cont.)

• Key step
 – Choosing which production should be selected

• Two approaches
 – Backtracking
 • Choose some production
 • If fails, try different production
 • Parse fails if all choices fail
 – Predictive parsing
 • Analyze grammar to find FIRST sets for productions
 • Compare with lookahead to decide which production to select
 • Parse fails if lookahead does not match FIRST

First Sets

• Definition
 – \text{First}(y), for any terminal or nonterminal \(y \), is the set of initial terminals of all strings that \(y \) may expand to
 – We'll use this to decide what production to apply

• Examples
 – Given grammar \(S \to xyz \mid abc \)
 • First(xyz) = \{ x \}, First(abc) = \{ a \}
 • First(S) = First(xyz) \cup First(abc) = \{ x, a \}
 – Given grammar \(S \to A \mid B \quad A \to x \mid y \quad B \to z \)
 • First(x) = \{ x \}, First(y) = \{ y \}, First(A) = \{ x, y \}
 • First(z) = \{ z \}, First(B) = \{ z \}
 • First(S) = \{ x, y, z \}

Example (cont’d)

E → id = n | { L }
L → E ; L | ε

– And we want to turn it into a parse tree

First Sets

• Motivating example
 – The lookahead is \(x \)
 – Given grammar \(S \to xyz \mid abc \)
 • Select \(S \to xyz \) since first terminal in RHS matches \(x \)
 – Given grammar \(S \to A \mid B \quad A \to x \mid y \quad B \to z \)
 – Select \(S \to A \), since \(A \) can derive string beginning with \(x \)

• In general
 – Choose a production that can derive a sentential form beginning with the lookahead
 – Need to know what terminal may be first in any sentential form derived from a nonterminal / production

Calculating First(y)

• For terminal \(a \), \(\text{First}(a) = \{ a \} \)

• For a nonterminal \(N \):
 – If \(N \to \varepsilon \), then add \(\varepsilon \) to \(\text{First}(N) \)
 – If \(N \to \alpha_1 \alpha_2 \ldots \alpha_n \) then (note the \(\alpha_i \) are all the symbols on the right side of one single production):
 • Add \(\text{First}(\alpha_1 \alpha_2 \ldots \alpha_i) \) to \(\text{First}(N) \), where \(\text{First}(\alpha_1 \alpha_2 \ldots \alpha_i) \) is defined as
 – \(\text{First}(\alpha_i) \) if \(\varepsilon \notin \text{First}(\alpha_i) \)
 – Otherwise \(\text{First}(\alpha_i) = \varepsilon \cup \text{First}(\alpha_1 \ldots \alpha_{i-1}) \)
 • If \(\varepsilon \notin \text{First}(\alpha_i) \) for all \(\alpha_i \), then add \(\varepsilon \) to \(\text{First}(N) \)
Examples

<table>
<thead>
<tr>
<th>Syntax</th>
<th>First Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → id = n</td>
<td>{ id }</td>
</tr>
<tr>
<td>L → E : L</td>
<td>{ ε }</td>
</tr>
<tr>
<td>First(id) = { id }</td>
<td>First(id) = { id }</td>
</tr>
<tr>
<td>First("=") = { "=" }</td>
<td>First("=") = { "=" }</td>
</tr>
<tr>
<td>First(n) = { n }</td>
<td>First(n) = { n }</td>
</tr>
<tr>
<td>First("{") = { "{" }</td>
<td>First("{") = { "{" }</td>
</tr>
<tr>
<td>First("{") = { "{" }</td>
<td>First("{") = { "{" }</td>
</tr>
<tr>
<td>First(";") = { ";" }</td>
<td>First(";") = { ";" }</td>
</tr>
<tr>
<td>First(E) = { id, "{" }</td>
<td>First(E) = { id, "{" }</td>
</tr>
<tr>
<td>First(L) = { id, "," }</td>
<td>First(L) = { id, "{" }</td>
</tr>
</tbody>
</table>

Recursive Descent Parser Implementation

- For terminals, create function match(a)
 - If lookahead is a it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Otherwise fails with a parse error if lookahead is not a
- In algorithm descriptions, consider parse_a, parse_term(a) to be aliases for match(a)
- For each nonterminal N, create a function parse_N
 - Called when we're trying to parse a part of the input which corresponds to (or can be derived from) N
 - parse_S for the start symbol S begins the parse

Parser Implementation (cont.)

- The body of parse_N for a nonterminal N does the following
 - Let N → β_1 ... | β_k be the productions of N
 - Here β_i is the entire right side of a production's a sequence of terminals and nonterminals
 - Pick the production N → β_j such that the lookahead is in First(β_j)
 - It must be that First(β_i) \cap First(β_j) = ∅ for i ≠ j
 - If there is no such production, but N → ε then return
 - Otherwise fail with a parse error
 - Suppose β_j = α_1 α_2 ... α_p. Then call parse_α_1(); ... ; parse_α_p(); to match the expected right-hand side, and return

Recursive Descent Parser

- Given grammar S → xyz | abc
 - First(xyz) = { x }, First(abc) = { a }:
- Parser
  ```java
  parse_S() {
    if (lookahead == "x") {
      match("x"); match("y"); match("z");  // S → xyz
    } else if (lookahead == "a") {
      match("a"); match("b"); match("c");  // S → abc
    } else error();
  }
  ```

Recursive Descent Parser

- Given grammar S → A | B : A → x | y : B → z
 - First(A) = { x, y }, First(B) = { z }:
- Parse
  ```java
  parse_S() {
    if (lookahead == "x")
      match("x");  // A → x
    else if (lookahead == "y")
      parse_A();  // S → A
    else if (lookahead == "z")
      match("y");  // A → y
        else error();
    parse_B();  // S → B
          else error();
  }
  ```
Example

E → id = n | { L }
L → E ; L | ε

parse_E() {
 if (lookahead == "id") {
 match("id");
 match("=");
 parse_E();
 match("n");
 return E;
 }
 else if (lookahead == ":") {
 match(":");
 parse_L();
 return L;
 }
 else { error();
 }
}

L

Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree

- Examples
 - Grammar
 • S → xyz
 • S → abc
 - String "xyz"
 • parse_S() {
 match("x");
 match("y");
 match("z");
 }

- Things to Notice (cont.)

 • This is a predictive parser
 - Because the lookahead determines exactly which production to use
 • This parsing strategy may fail on some grammars
 - Possible infinite recursion
 - Production First sets overlap
 - Production First sets contain ε
 • Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar

- Left Factoring

 • Consider parsing the grammar E → ab | ac
 - First(ab) = a
 - First(ac) = a
 - Parser cannot choose between RHS based on lookahead!
 • Parser fails whenever A → α₁ | α₂ and
 - First(α₁) n First(α₂) ! = ε or ∅
 • Solution
 - Rewrite grammar using left factoring

- Left Factoring Algorithm

 • Given grammar
 - A → x₀ | x₁ | ... | xₙ | β
 • Rewrite grammar as
 - A → x₀L | β
 - L → α₁ | α₂ | ... | αₙ
 • Repeat as necessary
 • Examples
 - S → ab | ac
 - S → abcA | abB | a
 | S → aL | L → b | c
 - L → bcA | bB | ε
 | S → aL | L → bL°C | L→ cA | B

- Left Recursion

 • Consider grammar S → Sa | ε
 - First(Sa) = a, so we're ok as far as which production
 - Try writing parser
 • parse_S() {
 if (lookahead == "a") {
 parse_S();
 match("a"); // S → Sa
 }
 else {
 }
 }
 - Body of parse_S() has an infinite loop
 • if (lookahead == "a") then parse_S()
 - Infinite loop occurs in grammar with left recursion
Right Recursion

- Consider grammar \(S \rightarrow aS | \varepsilon \)
 - Again, \(\text{First}(aS) = a \)
 - Try writing parser
    ```
    
    parse_S() {
      if (lookahead == "a") {
        match("a");
        parse_S();
        // S \rightarrow aS
      } else {
      }
    }
    ```
 - Will \(\text{parse}_S() \) infinite loop?
 - Invoking \(\text{match()} \) will advance lookahead, eventually stop
 - Top down parsers handles grammar w/ right recursion

Algorithm To Eliminate Left Recursion

- Given grammar
  ```
  A \rightarrow A_1 | A_2 | \ldots | A_n | \beta
  ```
 - Why must \(\beta \) exist?
- Rewrite grammar as
  ```
  A \rightarrow \beta L
  L \rightarrow a_1 L | a_2 L | \ldots | a_n L | \varepsilon
  ```
 - Replaces left recursion with right recursion
 - Repeat as necessary

Eliminating Left Recursion (cont.)

- Examples
  ```
  \( S \rightarrow S a | \varepsilon \)
  \( S \rightarrow S a | S b | \varepsilon \)
  ```
 - May need more powerful algorithms to eliminate mutual recursion leading to left recursion
 - \(S \rightarrow A a | b \)
 - \(A \rightarrow S b \)

Expr Grammar for Top-Down Parsing

- \(E \rightarrow T E' \)
- \(E' \rightarrow \varepsilon | + E \)
- \(T \rightarrow P T' \)
- \(T' \rightarrow \varepsilon | ^* T \)
- \(P \rightarrow n | (E) \)

 - Notice we can always decide what production to choose with only one symbol of lookahead

Tradeoffs with Other Approaches

- Recursive descent parsers are easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren’t told about grammars formally
 - They’re unable to handle certain kinds of grammars
- Recursive descent is good for a simple parser
 - Though tools can be fast if you’re familiar with them
- Can implement top-down predictive parsing as a table-driven parser
 - By maintaining an explicit stack to track progress

Tradeoffs with Other Approaches

- More powerful techniques need tool support
 - Can take time to learn tools (lex/flex, yacc/bison)
- Main alternative is bottom-up, shift-reduce parser
 - Replaces RHS of production with LHS (nonterminal)
 - Example grammar
    ```
    S \rightarrow aA A \rightarrow Bc B \rightarrow b
    ```
 - Example parse
    ```
    abc \Rightarrow aBc \Rightarrow aA \Rightarrow S
    ```
 - Derivation happens in reverse
 - Something to look forward to in CMSC 430
What's Wrong With Parse Trees?

- Parse trees contain too much information
 - Example
 - Parentheses
 - Extra nonterminals for precedence
 - This extra stuff is needed for parsing

- But when we want to reason about languages
 - Extra information gets in the way (too much detail)

Abstract Syntax Trees (ASTs)

- An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts

Abstract Syntax Trees (cont.)

- Intuitively, ASTs correspond to the data structure you'd use to represent strings in the language
 - Note that grammars describe trees
 - So do OCaml datatypes (which we'll see later)
 - \[E \rightarrow a \mid b \mid c \mid E + E \mid E - E \mid E \cdot E \mid (E) \]

Producing an AST

- To produce an AST, we can modify the parse() functions to construct the AST along the way
 - match(a) returns an AST node (leaf) for a
 - Parse_A returns an AST node for A
 - AST nodes for RHS of production become children of LHS node

Summary

- Learned a little about parsing
 - Recursive descent parser
 - Predictive parsing using FIRST sets
- Rewriting grammars for predicative parsing
 - Left factoring
 - Eliminating left recursion
- Abstract syntax trees (ASTs)