Introduction

- So far we've looked at regular expressions, automata, and context-free grammars
 - These are ways of defining sets of strings
 - We can use these to describe what programs you can write down in a language
 - (Almost...)
 - I.e., these describe the syntax of a language

- What about the *semantics* of a language?
 - What does a program "mean"?

Operational Semantics

- There are several different kinds of semantics
 - Denotational: A program is a mathematical function
 - Give predicates that hold when a program (or part) is executed
 - Axiomatic: Develop a logical proof of a program
 - Operational semantics are easy to understand
- We will briefly look at *operational semantics*
 - A program is defined by how you execute it on a mathematical model of a machine
 - We will look at a subset of OCaml as an example

Evaluation

- We're going to define a relation \(E \rightarrow v \)
 - This means "expression \(E \) evaluates to \(v \)"
- So we need a formal way of defining programs and of defining things they may evaluate to
- We'll use grammars to describe each of these
 - One to describe abstract syntax trees \(E \)
 - One to describe OCaml values \(v \)
OCaml Programs

- \(E ::= x \mid n \mid \text{true} \mid \text{false} \mid \text{[]} \mid \text{if } E \text{ then } E \text{ else } E \)
 - \(x \) stands for any identifier
 - \(n \) stands for any integer
 - \(\text{true} \) and \(\text{false} \) stand for the two boolean values
 - \(\text{[]} \) is the empty list
 - Using \(= \) in fun instead of \(-\) to avoid some confusion later

Grammars for Trees

- We’re just using grammars to describe trees
 - \(E ::= x \mid n \mid \text{true} \mid \text{false} \mid \text{[]} \mid \text{if } E \text{ then } E \text{ else } E \)
 - fun \(x = E \mid E \)

<table>
<thead>
<tr>
<th>Type ast =</th>
<th>Type value =</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id of string</td>
<td>Val of string</td>
</tr>
<tr>
<td>Num of int</td>
<td>Val of int</td>
</tr>
<tr>
<td>Bool of bool</td>
<td>Val of bool</td>
</tr>
<tr>
<td>If of ast * ast * ast</td>
<td>Val of int</td>
</tr>
<tr>
<td>Fun of string * ast</td>
<td>Val of string</td>
</tr>
<tr>
<td>App of ast * ast</td>
<td>Val of value</td>
</tr>
</tbody>
</table>

Goal: For any ast, we want an operational rule to obtain a value that represents the execution of ast

Operational Semantics Rules

- \(n \rightarrow n \)
- \(\text{true} \rightarrow \text{true} \)
- \(\text{false} \rightarrow \text{false} \)
- \(\text{[]} \rightarrow \text{[]} \)

Values

- \(v ::= n \mid \text{true} \mid \text{false} \mid \text{[]} \mid v:v \)
 - \(n \) is an integer (not a string resp. to an integer)
 - Same idea for \(\text{true} \), \(\text{false} \), \(\text{[]} \)
 - \(v1:v2 \) is the pair with \(v1 \) and \(v2 \)
 - This will be used to build up lists
 - Notice: nothing yet requires \(v2 \) to be a list
 - Important: Be sure to understand the difference between \textit{program text} \(S \) and \textit{mathematical objects} \(v \)
 - E.g., the text 3 evaluates to the mathematical number 3
 - To help, we’ll use different colors and italics
 - This is usually not done, and it’s up to the reader to remember which is which

Operational Semantics Rules (cont’d)

- How about built-in functions?
 - \((+)n \rightarrow n + m\)
 - We’re applying the \(+\) function
 - (we put paren around it because it’s not in infix notation; will skip this from now on)
 - Ignore currying for the moment, and pretend we have multi-argument functions
 - On the right-hand side, we’re computing the mathematical sum; the left-hand side is source code
 - But what about \((+34)5\) ?
 - We need recursion

Rules with Hypotheses

- To evaluate \(E_1, E_2\), we need to evaluate \(E_1\), then evaluate \(E_2\), then add the results
 - This is call-by-value
 - \(E_1 \rightarrow n \quad E_2 \rightarrow m\)
 - \(+ E_1 E_2 \rightarrow n + m\)
 - This is a “natural deduction” style rule
 - It says that if the hypotheses above the line hold, then the conclusion below the line holds
 - i.e., if \(E_1\) executes to value \(n\) and if \(E_2\) executes to value \(m\), then \(+ E_1 E_2\) executes to value \(n + m\)
Error Cases

\[E_1 \rightarrow n \quad E_2 \rightarrow m \]
\[+ E_1, E_2 \rightarrow n + m \]

- Because we wrote \(n, m \) in the hypothesis, we mean that they must be integers
- But what if \(E_1 \) and \(E_2 \) aren’t integers?
 - E.g., what if we write \(+ false true\)?
 - It can be parsed, but we can’t execute it
- We will have no rule that covers such a case
 - Convention: If there is no rule to cover a case, then the expression is erroneous
 - A program that evaluates to a stuck expression produces a run-time error in practice

Trees of Semantic Rules

- When we apply rules to an expression, we actually get a tree
 - Corresponds to the recursive evaluation procedure
 - For example: \(+ (+ 3 4) 5\)

\[
\begin{array}{c}
3 \rightarrow 3 \\
(+ 3 4) \rightarrow 7 \\
5 \rightarrow 5 \\
+ (+ 3 4) 5 \rightarrow 12
\end{array}
\]

Rules for If

\[E_1 \rightarrow true \quad E_2 \rightarrow v \]
\[if E_1 then E_2 else E_3 \rightarrow v \]

- Examples
 - if false then 3 else 4 \(\rightarrow 4 \)
 - if true then 3 else 4 \(\rightarrow 3 \)
- Notice that only one branch is evaluated

Rules for Hd and Tl

\[E \rightarrow v_1::v_2 \]
\[hd E \rightarrow v_1 \]
\[E \rightarrow v_1::v_2 \]
\[tl E \rightarrow v_2 \]

Rules for Identifiers

- Let’s assume for now that the only identifiers are parameter names
 - Ex. \((\text{fun} \ x = + x) 4 \)
 - When we see \(x \) in the body, we need to look it up
 - So we need to keep some sort of environment
 - This will be a map from identifiers to values
Semantics with Environments

- Extend rules to the form $A; E \rightarrow v$
 - Means in environment A, the program text E evaluates to v
- Notation:
 - We write \cdot for the empty environment
 - We write $A(x)$ for the value that x maps to in A
 - We write $A; x; v$ for the same environment as A, except x is now v
 - We write $A; A'$ for the environment with the bindings of A' added to and overriding the bindings of A
- The empty environment can be omitted when things are clear, and in adding other bindings to an empty environment we can write just those bindings if things are clear

Example: $(\text{fun } x = + x 3) \ 4 = ?$

\[
\begin{array}{c}
\ast; 4 \rightarrow 4 \\
\ast; (\text{fun } x = + x 3) \ 4 \rightarrow 7
\end{array}
\]

Rules for Identifiers and Application

\[
A; x \rightarrow A(x) \rightarrow \text{no hypothesis means “in all cases”}
\]

\[
A; E_2 \rightarrow v \\
A; x; v; E_1 \rightarrow v'
\]

- To evaluate a user-defined function applied to an argument:
 - Evaluate the argument (call-by-value)
 - Evaluate the function body in an environment in which the formal parameter is bound to the actual argument
 - Return the result

Nested Functions

- This works for cases of nested functions
 - ...as long as they are fully applied
- But what about the true higher-order cases?
 - Passing functions as arguments, and returning functions as results
 - We need closures to handle this case
 - ...and a closure was just a function and an environment
 - We already have notation around for writing both parts

Closures

- Formally, we add closures $(A, \lambda x.E)$ to values
 - A is the environment in which the closure was created
 - x is the parameter name
 - E is the source code for the body
- λx will be discussed next time. Means a binding of x in E.
- $v ::= n \ | \ \text{true} \ | \ \text{false} \ | \ [] \ | \ v::v$
 \[
 | \ (A, \lambda x.E)
 \]

Revised Rule for Lambda

\[
A; \text{fun } x = E \rightarrow (A, \lambda x.E)
\]

- To evaluate a function definition, create a closure when the function is created
 - Notice that we don’t look inside the function body
Revised Rule for Application

\[A; E_1 \rightarrow (A; \lambda x. E) \quad A; E_2 \rightarrow \nu \]
\[A', x; \nu; E \rightarrow \nu' \]
\[A; (E_1, E_2) \rightarrow \nu' \]

- To apply something to an argument:
 - Evaluate it to produce a closure
 - Evaluate the argument (call-by-value)
 - Evaluate the body of the closure, in
 - The current environment, extended with the closure's environment, extended with the binding for the parameter

Example

*; (\text{fun } x = (\text{fun } y = + x y)) \rightarrow (\ast, \lambda x.(\text{fun } y = + x y))

*; 3 \rightarrow 3

\x:3; (\text{fun } y = + x y) \rightarrow (x:3, \lambda y.(+ x y))

*; (\text{fun } x = (\text{fun } y = + x y)) 3 \rightarrow (x:3, \lambda y.(+ x y))

Let \(<\text{previous}> = (\text{fun } x = (\text{fun } y = + x y)) 3\)

Example (cont'd)

*; <\text{previous}> \rightarrow (x:3, \lambda y.(+ x y))
*; 4 \rightarrow 4
\x:3, y:4; (+ x y) \rightarrow 7
*; (<\text{previous} 4) \rightarrow 7

Why Did We Do This? (cont’d)

- Operational semantics are useful for
 - Describing languages
 - Not just OCaml! It’s pretty hard to describe a big language like C or Java, but we can at least describe the core components of the language
 - Giving a precise specification of how they work
 - Look in any language standard – they tend to be vague in many places and leave things undefined
 - Reasoning about programs
 - We can actually prove that programs do something or don’t do something, because we have a precise definition of how they work