1. (6 pts) Programming Languages

 a. (3 pts) Describe one design choice for type declarations for static types in a programming language, and list a programming language using this approach.

 Manifest (explicit) – type specified in variable declaration (Java, C, Java)
 Inferred (implicit) – not specified, determined by compiler from usage (OCaml)

 b. (3 pts) How can programmers write Java programs which (effectively) pass functions as arguments to other functions? Give a brief answer.

 Pass an object implementing an interface with a known method.

2. (8 pts) Scoping

 Consider the following OCaml code.

   ```ocaml
   let app f y = let y = 5 in let x = 7 in let a = 9 in f y ;;
   let add x y = let incr a = a+y in app incr x ;;
   (add 2 4) ;;
   ```

 a. (2 pts) List the order the functions `add`, `incr`, and `app` are invoked in `(add 2 4)`

 `add`, `app`, `incr`

 b. (3 pts) What value is returned by `(add 2 4)` with static scoping? Explain.

 `9`, since for `incr a = a+y: a=5 (let y = 5...in f y)` and `y=4 (add x y = ...)` (add 2 4).

 c. (3 pts) What value is returned by `(add 2 4)` with dynamic scoping? Explain.

 `10`, since for `incr a = a+y: a=5 (let y = 5...in f y)` and `y=5 (let y = 5...in f y)`.

 Explanation: The return value is determined by `incr`, when it is invoked as `(f y)` by `app`.

 The value of `incr a` is `a+y`. The formal parameter `a` is bound to the value of the argument passed to `incr`. In `app` when `(f y)` is invoked, the argument `y` always has the value of `5`, since the closest definition of `y` (both static & dynamic) is the `let y = 5` in `app`. So `a=5`.

 The value of `y` in `a+y` is more tricky. Within the body of `incr`, `y` is a free variable. So when `incr` is invoked, the value of `y` is determined based on the type of scoping.

 For static scoping, `y` is bound to the closest lexical binding of `y` where it appears in the body of `incr` (i.e., `let add x y = let incr...`). At runtime this is the 2nd argument to `add`, which for `(add 2 4)` is `4`. So `y=4`, and `a+y=9`.

 For dynamic scoping, `y` is bound to the closest dynamic binding of `y` when `incr` is actually evaluated. Since `incr` is called after `app`, the closest binding of `y` is the binding in `app` (i.e., `let y = 5`). So `y=5`, and `a+y=10`.
3. (12 pts) Parsing
 a. (5 pts) Compute First sets for S and A in the following grammar:
 \[
 \begin{align*}
 S & \rightarrow \text{Acd}c \\
 \text{A} & \rightarrow \text{bgS} \\
 S & \rightarrow \text{aAf} \\
 \text{A} & \rightarrow \varepsilon \quad (* \text{epsilon} *)
 \end{align*}
 \]

 \text{First(S)} = \{ a, b, c \}, \text{First(A)} = \{ b, \varepsilon \}

 b. (3 pts) Apply the algorithm discussed in class to transform the following grammar so that it can be parsed using a recursive descent parser.
 \[
 \begin{align*}
 S & \rightarrow \text{Sb} \\
 S & \rightarrow \text{ac} \\
 S & \rightarrow \text{acL} \\
 \text{L} & \rightarrow \text{bL} | \varepsilon
 \end{align*}
 \]

 c. (4 pts) Recursive Descent Parsing
 Using pseudocode, write a recursive descent parser for the following grammar.
 \[
 \begin{align*}
 S & \rightarrow \text{cbS} \\
 S & \rightarrow \varepsilon \quad (* \text{epsilon} *)
 \end{align*}
 \]

 \text{parse}_S() {
 if (lookahead == “c”) {
 match(“c”); match(“b”); parse_S() ;
 } else {
 ;
 }
 }

4. (16 pts) Lambda calculus

Evaluate the following λ-expressions as much as possible. Show each beta-reduction.

a. (3 pts) \((\lambda x.\lambda y. y x) a (\lambda z. z) b\)

\((\lambda x.\lambda y. y x) a (\lambda z. z) b\) \hspace{1cm} // β-reduction: x → a

\=> (\lambda y. y a) (\lambda z. z) b \hspace{1cm} // β-reduction: y → (\lambda z. z)

\=> ((\lambda z. z) a) b \hspace{1cm} // β-reduction: z → a

\=> a b

b. (3 pts) \((\lambda y. \lambda x. x y) x a b\)

\((\lambda y. \lambda x. x y) x a b\) \hspace{1cm} // α-conversion: replace x with z

\=> (\lambda y. \lambda z. z y) x a b \hspace{1cm} // β-reduction: y → x

\=> (\lambda z. z x) a b \hspace{1cm} // β-reduction: z → a

\=> a x b

\M * \N = \lambda x. (M (N x))

\1 = \lambda f. \lambda y. f y

\2 = \lambda f. \lambda y. f (f y)

\3 = \lambda f. \lambda y. f (f (f y))

\4 = \lambda f. \lambda y. f (f (f (f y)))

\c. (10 pts) Using encodings, show \(2 * 1 \Rightarrow 2\). Show each beta-reduction.

\Rightarrow \ast \ indicates 0 or more steps of beta-reduction

You may assume \(\lambda f. \lambda y. f (f y) \Rightarrow 2\)

\(2 * 1 \Rightarrow\)

\Rightarrow \lambda x. (2 \ (1 x)) \hspace{1cm} // replacing * w/ encoding

\Rightarrow \lambda x. (2 \ ((\lambda f. \lambda y. f y) x)) \hspace{1cm} // replacing 1 w/ encoding

\Rightarrow \lambda x. (2 \ (\lambda y. x y)) \hspace{1cm} // β-reduction: 1^{st} f → x

\Rightarrow \lambda x. (\lambda y. f (f y)) (\lambda y. x y)) \hspace{1cm} // β-reduction: 1^{st} f w/ \lambda y. x y

\Rightarrow \lambda x. (\lambda y. (\lambda y. x y) ((\lambda y. x y) y)) \hspace{1cm} // β-reduction: 3^{rd} y → y

\Rightarrow \lambda x. (\lambda y. (\lambda y. x y) (x y)) \hspace{1cm} // β-reduction: 2^{nd} y → x y

\Rightarrow \lambda x. \lambda y. (x (x y)) \hspace{1cm} // α-conversion: replace x with f

\Rightarrow \lambda f. \lambda y. f (f y)) \hspace{1cm} // i.e., is encoding for 2

\Rightarrow 2

5. (8 pts) OCaml Types and Type Inference

a. (2 pts) Give the value of the following OCaml expression. If an error exists, describe it.

let x y = y in 3

\textbf{Value} = 3

b. (3 pts) Give the type of the following OCaml expression

fun y -> [y 1]

\textbf{Type} = \texttt{(int -> 'a) -> 'a list}

c. (3 pts) Write an OCaml expression with the following type

bool -> bool -> int

\textbf{Code} = (fun x y -> if (x && y) then 1 else 2)

\textbf{OR} = let f x y = if (x && y) then 1 else 2
6. (50 pts) OCaml Programming

a. (4 pts) Implement **lookup**

   ```ocaml```
   let rec lookup id lst = match lst with
       | [] -> raise NotFound
       | (a,b)::t -> if (id=a) then b else (lookup id t)
   ```

b. (6 pts) Implement **remove** using fold & anonymous function

   ```ocaml```
   let remove id lst = fold (fun a (x,v) -> if (x=id) then a else ((x,v)::a)) [] lst
   ```

 let rec remove id lst = match lst with // OR for partial credit
 | [] -> []
 | (a,b)::t -> if (id=a) then t else (a,b)::(remove id t)
   ```

c. (14 pts) Implement **eval**

   ```ocaml```
 let rec eval st exp = match exp with
 | Id str -> let n = (lookup str st) in (n, st)
 | Define (str, e) -> let (v, st2) = (eval st e) in (v, (str,v)::(remove str st2))
 | Num n -> (Val_num n, st)
   ```

d. (26 pts) Implement **eval** supporting updatable references

   ```ocaml```
 let rec eval st exp =
 match st with (bindings, memory, next_mem) ->
 match exp = match exp with
 | ...
 | Ref e -> let (v, (b2,m2,n2)) = (eval st e) in
 ((Val_ptr n2), (b2, (n2,v)::m2, (n2+1)))
 | Deref e -> let (v,(b2,m2,n2)) = (eval st e) in
 (match v with
 Val_num _ -> raise IllegalDeref
 | Val_ptr a -> let v2 = (lookup a m2) in (v2, (b2, m2, n2))
)
 | Assign (lhs, rhs) -> (let (lhs_v, (b2,m2,n2)) = (eval st lhs) in
 let (rhs_v, (b3,m3,n3)) = (eval (b2,m2,n2) rhs) in
 (match rhs_v with
 Val_num _ -> raise IllegalDeref
 | Val_ptr a -> (rhs_v, (b3, (a,rhs_v)::(remove a m3), n3))
)
)
   ```

Note how whenever eval is called, it returns a pair (value, new state). The new state must be used the next time eval is called, and the most recent state returned by eval.