CMSC 427: Chapter 10
Rasterization and Filling

Reading: Sect 8.1 in Shirley.
Overview:
- Curve Representations
- Line Segment Scan Conversion (DDA, Bresenham)
- Filling (Flood filling, Implicit function test, Scan-line algorithm)

Overview

- Curve Representations
- Line Segment Scan Conversion
 - Naive algorithm
 - DDA
 - Bresenham's algorithm
- Filling
 - Flood filling
 - Implicit function test
 - Scan-line algorithm
Rasterization (a.k.a. Scan Conversion)

Rasterization:
- Maps primitive geometric objects (lines, curves, triangles) to a set of pixels, typically represented as a sequence of scan-line intervals.

Must be Efficient:
- Required for every primitive and every frame.

Must be Simple:
- Implemented in assembly language or microcode.
- Implemented in GPU using only integer arithmetic.

Curve Representations

Geometric curves in 2-d (and surfaces in 3-d) are typically represented in one of two ways:

Implicit representation: The zero-set of a function \(f(x, y) \).

Parametric representation: The \((x, y)\) coordinates are a function of one or more scalar parameters.
Implicit Representation (Curve in 2D)

Implicit Representation: The points of the curve are represented by a function \(f(x, y) \). The curve is the set of points

\[\{(x, y) \mid f(x, y) = 0 \} \]

Examples:
- **Line of slope 3/2 with y-intercept -1**: Satisfies:
 \[y = \left(\frac{3}{2}\right) x - 1 \]
 Thus, points \((x, y)\) on the line satisfy:
 \[3x - 2y - 2 = 0 \]
 Implicit representation is given by \(f(x, y) = 3x - 2y - 2 \).
- **Circle of radius 4 centered at (2,3)**: Satisfies:
 \[(x - 2)^2 + (y - 3)^2 = 4^2 \]
 Thus, point \((x, y)\) lies on the circle if and only if:
 \[(x - 2)^2 + (y - 3)^2 - 16 = 0 \]
 Implicit representation given by \(f(x, y) = (x - 2)^2 + (y - 3)^2 - 16 \).

Parametric Representation (Curve in 2D)

Parametric Representation: Represents the curve as a set of points \((x(t), y(t))\), as two functions of a parameter \(t \).

Examples:
- **Line of slope 3/2 with y-intercept -1**: Is the set of points:
 \[\{(x, y) \mid y = \left(\frac{3}{2}\right) x - 1 \} \]
 We can parameterize the line as a function of \(t = x \), giving
 \[x(t) = t \quad \text{and} \quad y(t) = \left(\frac{3}{2}\right) t - 1, \quad \text{where} \ -\infty < t < \infty \]
 This is only one of many possibilities. Another is:
 \[x(t) = 2t \quad \text{and} \quad y(t) = 3t - 1, \quad \text{where} \ -\infty < t < \infty \]
- **Circle of radius 4 centered at (2,3)**: We can parameterize the circle as a function of angle,
 \[x(t) = 2 + 4 \cdot \cos t \quad \text{and} \quad y(t) = 3 + 4 \cdot \sin t, \quad \text{where} \ 0 \leq t \leq 2\pi \]
Which Representation is Better?

Implicit Representation:

Good: Can be used to represent not only a curve, but the interior and exterior as well.
- Unit circle: \(x^2 + y^2 = 1 \).
- Interior: \(x^2 + y^2 < 1 \).
- Exterior: \(x^2 + y^2 > 1 \).

Good: Easy to intersect, with other objects or with other implicit objects by forming a system of multiple equations.

Bad: Less intuitive.

Bad: Harder to generate points along the curve.

Parametric Representation:

Good: Easy to generate points on the curve or decompose into pieces.

Good: Can easily generate objects of any dimension. E.g., using two parameters you can generate a surface.

Bad: Harder to intersect with other objects.

Line Segment Representation: Implicit

Consider line segment between \(q = (q_x, q_y) \) and \(r = (r_x, r_y) \). Assume integer coordinates.

Let \(d = (d_x, d_y) \) be the vector \(r - q \).

Implicit Representation: By similar triangles we have

\[
\frac{y - q_y}{x - q_x} = \frac{d_y}{d_x}.
\]

Expressing this as a linear equation in \(x \) and \(y \) we have the implicit representation:

\[
(x - q_x)d_y - (y - q_y)d_x = 0.
\]

or equivalently:

\[
ax + by + c = 0,
\]

where

- \(a = d_y \),
- \(b = -d_x \),
- \(c = q_y d_x - q_x d_y \).

Remember this form: We will use it later in Bresenham's algorithm.
Line Segment Representation: Explicit

Consider the line segment between points \(q = (q_x, q_y) \) to \(r = (r_x, r_y) \).

Let \(d = (d_x, d_y) \) be the vector \(r - q \).

\[
(x - q_x)d_x - (y - q_y)d_y = 0.
\]

Explicit Representation: We can express \(y \) as an explicit function of \(x \) in slope-intercept form:

\[
y = \frac{d_y}{d_x}(x - q_x) + q_y
\]

\[
= \frac{d_y}{d_x}x + \left(q_y - \frac{d_y}{d_x}q_x\right)
\]

\[
= m \cdot x + b.
\]

Line Segment Representation: Parametric

Parametric Representation: This can also be represented parametrically as

\[
p(t) = q + td, \quad \text{where } 0 \leq t \leq 1.
\]

Thus, \(p(0) = q \) and \(p(1) = r \).

In terms of coordinates we have

\[
p(t) = (x(t), y(t)), \quad \text{where } 0 \leq t \leq 1,
\]

where \(x(t) = q_x + t \cdot d_x \) and \(y(t) = q_y + t \cdot d_y \).
Overview

- Curve Representations
- Line Segment Scan Conversion
 - Naive algorithm
 - DDA
 - Bresenham's algorithm
- Filling
 - Flood filling
 - Implicit function test
 - Scan-line algorithm

Pixel Coordinate System

We usually think of pixels as small squares. For scan conversion, it is more natural to think of a pixel centers as lying on a coordinate grid coinciding with the pixel centers.
Naïve Algorithm for Line Scan-Conversion

Let the line segment be from \(q = (q_x, q_y) \) to \(r = (r_x, r_y) \). As seen before, we can convert this to slope-intercept form as \(y = mx + b \). For each integer \(x \)-coordinate, round to the nearest integer \(y \)-coordinate.

Naive Scan Conversion:

\[
\text{for (int } x \leftarrow q_x; x \leq r_x; x++) { \\
\quad \text{int } y \leftarrow \text{round} \ (m \cdot x + b) \\
\quad \text{writePixel} \ (x, y)
}\]

Assumptions:
- \(q_x \leq r_x \): If not, swap \(q \) and \(r \).
- **Slope is small**: If \(|m| > 1\), then pixels will be too widely scatter. In this case, have loop step along \(y \), rather than \(x \).

Digital Differential Analyzer (DDA)

One disadvantage of the naïve algorithm is that it involves a floating-point multiplication and floating-point addition with each step.

Idea: Compute each \(y \)-coordinate incrementally from the last. We have \(y_i = mx_i + b \) and \(y_{i+1} = mx_{i+1} + b \). Therefore:

\[
y_{i+1} = y_i + m(x_{i+1} - x_i) \\
= y_i + m\Delta x \\
= y_i + m, \text{ if (as normal) } \Delta x = 1.
\]

DDA Algorithm: (Same assumptions: \(q_x \leq r_x \) and \(|m| \leq 1\).)

\[
\text{float } m \leftarrow d_y / d_x \\
\text{float } b \leftarrow q_y - (d_y/d_x)q_x \\
\text{float } y \leftarrow mq_x + b \\
\text{writePixel} \ (q_x, \text{round}(y)); \\
\text{for (int } x \leftarrow q_x+1; x \leq r_x; x++) { \\
\quad y \leftarrow y + m \\
\quad \text{writePixel} \ (x, \text{round}(y));
}\]

// one floating point addition per step
Bresenham's Algorithm

Also called the **midpoint algorithm**. A very simple scan conversion algorithm for line segments which only requires:
- integer addition and subtraction.
- integer multiplication by 2 (equivalently a left shift by one bit).

Inputs: \(q = (q_x, q_y) \) and \(r = (r_x, r_y) \) with integer coordinates.

Same Assumptions: \(q_x \leq r_x, 0 \leq \text{slope} \leq 1 \).

Bresenham's Algorithm: Basics

Initial setup:
- Given \(q \) and \(r \), recall that we can express the line implicitly as \(a \cdot x + b \cdot y + c = 0 \).
- Multiplying by 2 does not change this, so we can instead use \(f(x, y) = 2a \cdot x + 2b \cdot y + 2c = 0 \). (We’ll see why later).

Incremental Step:
- Let \(p = (p_x, p_y) \) denote the previous pixel drawn. (Initially \(p = q \).)
- Since \(0 \leq \text{slope} \leq 1 \), the next pixel is either
 - \(E = (p_x+1, p_y) \) or
 - \(NE = (p_x+1, p_y+1) \).
Bresenham's Algorithm: Basics

Incremental Step:
- Next pixel is either \(E = (p_x+1, p_y) \) or \(NE = (p_x+1, p_y+1) \). Which?
- Consider the midpoint, \(p' = (p_x+1, p_y+\frac{1}{2}) \). If the line passes below \(p' \), go to \(E \). Otherwise go to \(NE \).

Decision Value: Let \(D = f(p') \).
- If \(D \leq 0 \), then line passes on or below \(p' \) and so we go to \(E \).
- Otherwise line passes above \(p' \) and so we go to \(NE \).

Key idea: Use value of \(D \) to determine next step. Then update \(D \).

Bresenham's Algorithm: Update for E

Decision Value: \(D = f(p') \). Let \(D_{old} \) be current value.
\[
D_{old} = 2a(p_x+1) + 2b(p_y+\frac{1}{2}) + 2c = 2ap_x + 2bp_y + 2a + b + 2c.
\]

How to Update \(D \) for \(E \)? Let \(D_{new} \) be the next value of \(D \).

If we go to \(E \):
\[
D_{new} = f(p_x + 2, p_y + (1/2))
= 2a(p_x + 2) + 2b(p_y + (1/2)) + 2c
= 2ap_x + 2bp_y + 4a + b + 2c
= D + 2a = D + 2d_y.
\]
Bresenham’s Algorithm: Update for NE

Decision Value: \(D = f(p') \). Let \(D_{\text{old}} \) be current value.
\[
D = 2a(p_x + 1) + 2b(p_y + \frac{1}{2}) + 2c = 2a p_x + 2b p_y + (2a + b + 2c).
\]

How to Update \(D \) for NE? Let \(D_{\text{new}} \) be the next value of \(D \).

If we go to NE: Then \(D_{\text{new}} = f(p_x + 2, p_y + (3/2)) \)
\[
= 2a(p_x + 2) + 2b(p_y + (3/2)) + 2c
= 2a p_x + 2b p_y + 4a + 3b + 2c
= D + 2(a + b) = D + 2(d_x - d_y).
\]

Bresenham’s Algorithm: Setup

Decision Value: \(D = f(p') \).
\[
D = 2a(p_x + 1) + 2b(p_y + \frac{1}{2}) + 2c = 2a p_x + 2b p_y + (2a + b + 2c).
\]

What is \(D \)'s initial value?
\[
D_{\text{init}} = f(q_x + 1, q_y + (1/2))
= 2a(q_x + 1) + 2b(q_y + (1/2)) + 2c
= (2a q_x + 2b q_y + 2c) + 2a + b
= 2a + b = 2d_y - d_x.
\]

This is 0 because \(q \) lies on the line.
Bresenham's Algorithms: Full Algorithm

```c
bresenham (Point q, Point r) {
    // assume qx ≤ rx and 0 ≤ slope ≤ 1
    int dx, dy, D, px, py;
    dx = rx - qx; // line width and height
    dy = ry - qy;
    D = 2·dy - dx; // initial decision value
    py = qy; // start at (q.x,q.y)
    for (px = qx; px <= rx; px++) {
        writePixel(px, py); // write the current pixel
        if (D ≤ 0) D += 2·dy // below midpoint - go to E
        else { // above midpoint - go to NE
            D += 2·(dy - dx);
            py++
        }
    }
}
```

Note: Only operations needed are integer addition and subtraction and multiplication times 2.

Bresenham's Algorithm: Final Details

What if assumptions (qx ≤ rx, 0 ≤ slope ≤ 1) are not satisfied?

a) 0 ≤ slope ≤ 1: The standard version.
b) -1 ≤ slope < 0: Similar to standard, but cases are SE and E rather than E and NE. Update rules are similar, but py is decremented in SE case.
c) 1 ≤ slope ≤ ∞: Same as a), but with x and y reversed.
d) -∞ ≤ slope ≤ -1: Same as b), but with x and y reversed.

If q and r are not in proper order, then swap them.
Overview

- Curve Representations
- Line Segment Scan Conversion
 - Naive algorithm
 - DDA
 - Bresenham's algorithm
- Filling
 - Flood filling
 - Implicit function test
 - Scan-line algorithm

Polygon Scan Conversion

Polygon Scan Conversion: Given a 2-dimensional polygon, determine which pixels lie within this polygon and color (or shade) them.

Coordinate Grid: Think of pixels as lying on a coordinate grid coinciding with the pixel centers.
Polygon Scan Conversion

When does a pixel lie within a polygon?

Implicit Function: Test whether the center of each pixel lies on the appropriate side of each of the polygon's sides.

Even-odd Rule: Count the times a line through the pixel to infinity crosses the polygon's edge. **Odd → Inside; Even → Outside.**

Winding Number: Count how many times the boundary "winds" around the pixel. **Non-Zero → Inside; Zero → Outside.**

These rules produce the same result if the polygon is simple but may differ if boundary self-intersects.

Flood Filling

Legend: White = Uncolored
Orange = Colored

Flood Filling: Given a region bounded by a set of colored pixels, and a starting pixel within this region, color everything that is reachable within the region from the starting pixel.
Flood Filling

\[
\text{Legend: White = Uncolored} \quad \text{Orange = Colored}
\]

\[
\text{floodFill}(x, y) \{
\text{if (readPixel}(x, y) \neq \text{Colored}) \{
\text{writePixel}(x, y) \leftarrow \text{Colored};
\text{floodFill}(x - 1, y);
\text{floodFill}(x + 1, y);
\text{floodFill}(x, y - 1);
\text{floodFill}(x, y + 1);
\}
\}
\]

Note: This is basically depth-first search, where
“Colored” means “Visited”.

Chapter 10, Slide 27
Copyright © D. M. Mount and A. Varshney
Flood Filling

Legend: White = Uncolored
Orange = Colored

\[
floodFill(x, y) \{
 \text{if (readPixel}(x, y) \neq \text{Colored}) \{
 \text{writePixel}(x, y) \leftarrow \text{Colored};
 \text{floodFill}(x - 1, y);
 \text{floodFill}(x + 1, y);
 \text{floodFill}(x, y - 1);
 \text{floodFill}(x, y + 1);
 \}
\}
\]
Flood Filling

Legend: White = Uncolored
Orange = Colored

```plaintext
floodFill (x, y) {
    if (readPixel (x, y) ≠ Colored) {
        writePixel (x, y) ← Colored;
        floodFill (x - 1, y);
        floodFill (x + 1, y);
        floodFill (x, y - 1);
        floodFill (x, y + 1);
    }
}
```

Chapter 10, Slide 31
Copyright © D. M. Mount and A. Varshney

Connectedness

What pixels are "connected"?

- → 4-connected
- → 8-connected

Easier to "leak out" of a region when using 8-connectedness than in 4-connectedness.
Connectedness

If we try the same algorithm but trying to fill all 8 neighbors in the previous example, the algorithm will leak out of the region.

Eventually the entire window will be colored.

Limitations of Flood Filling

- Unlike the even-odd rule and winding number method, flood filling cannot fill objects with non-simple (self intersecting) boundaries.

- May visit the same pixel several times (but will color it only once) - wasted effort.

- Requires an ability to read-back the buffer (which is on the GPU). This is slow, since data transfer is optimized to move from the CPU to the GPU.
Implicit Function Test

For convex polygons: Each pixel must lie within halfplanes defined by the edges of the polygon.

\[e_1 = a_1 x + b_1 y + c_1 \]
\[e_2 = a_2 x + b_2 y + c_2 \]
\[e_3 = a_3 x + b_3 y + c_3 \]

Select all pixels (whose centers) satisfy
\[a_1 x + b_1 y + c_1 < 0. \]
Implicit Function Test

Select further the subset of selected pixels for which
\[a_2x + b_2y + c_2 < 0. \]

[Diagram showing a shaded triangle]

Chapter 10, Slide 37
Copyright © D. M. Mount and A. Vezhney

Implicit Function Test

Select further subset of selected pixels for which
\[a_3x + b_3y + c_3 < 0. \]

[Diagram showing a shaded triangle]

Chapter 10, Slide 38
Copyright © D. M. Mount and A. Vezhney
Implicit Function Test

Advantages:
- Great for parallel implementation.
 (One processor per pixel: Pixel Planes architecture)
- Easy to implement.

Disadvantages:
- Works only on convex polygons.
 - Not significant since everyone uses triangles.
- Requires k tests per pixel, where $k =$ number of edges.

Scan-line Algorithm

Edge Table: Use bucket sort to order edges.

![Diagram showing scan-line algorithm with equations and coordinates for points a, b, c, and x₀ = 12.](image)
Scan-line Algorithm

Active Edge Table (AET):
- Changes incrementally from one scan-line to the next.
- Stores the sorted edge sequence intersected by the scan-line.

For every scan-line i:
- Add new entries from `Edge_Table[i]` (for all starting edges) and set x coordinate to x_0.
- Color the interval of pixels between consecutive x-values.
- For each edge in AET do:
 - $\Delta y = \Delta y - 1$ // decrement row count
 - $x = x + \Delta x$ // adjust x-coordinate
- if ($\Delta y = 0$) remove entry from AET; // bottom of line

AET:

```
  ab: (\Delta y = 9, \Delta x = -1, x = 12),
  ac: (\Delta y = 12, \Delta x = 0.5, x = 12)
```

$y = 0$
Scan-line Algorithm

AET: [ab: (Δy = 9-1 = 8, Δx = -1, x = 12+Δx = 11),
 ac: (Δy = 12-1 = 11, Δx = 0.5, x = 12+Δx = 12.5)]

y = 1

Scan-line Algorithm

AET: [ab: (Δy = 8-1 = 7, Δx = -1, x = 11+Δx = 10),
 ac: (Δy = 11-1 = 10, Δx = 0.5, x = 12.5+Δx = 13)]

y = 2
Scan-line Algorithm

\[\text{AET: [} \begin{align*}
&ab: (\Delta y = 0, \Delta x = -1, x = 3) , \\
&ac: (\Delta y = 3, \Delta x = 0.5, x = 16.5) \end{align*} \] \leftarrow \text{Remove this and insert bc} \]

\[y = 9 \]

Scan-line Algorithm

\[\text{AET: [} \begin{align*}
&bc: (\Delta y = 3 - 1 = 2, \Delta x = 5, x = 3 + \Delta x = 8), \\
&ac: (\Delta y = 3 - 1 = 2, \Delta x = 0.5, x = 16.5 + \Delta x = 17) \end{align*} \]

\[y = 10 \]
Scan-line Algorithm

Final Result

![Algorithm visualization](image)

Advantages:
- Incremental, efficient
- Can handle concave, convex polygons

Disadvantages:
- Cannot handle non-simple (self-intersecting) polygons
 (But these are rare in most real-life graphics datasets.)
Summary:

- Curve Representations
- Line Segment Scan Conversion
 - Naïve algorithm
 - DDA
 - Bresenham's algorithm
- Filling
 - Flood filling
 - Implicit function test
 - Scan-line algorithm