CMSC 427: Chapter 10
Rasterization and Filling

Reading: Sect 8.1 in Shirley.

Overview:
- Curve Representations
- Line Segment Scan Conversion (DDA, Bresenham)
- Filling (Flood filling, Implicit function test, Scan-line algorithm)

Rasterization (a.k.a. Scan Conversion)

Rasterization:
- Maps primitive geometric objects (lines, curves, triangles) to a set of pixels, typically represented as a sequence of scan-line intervals.

Must be Efficient:
- Required for every primitive and every frame.

Must be Simple:
- Implemented in assembly language or microcode.
- Implemented in GPU using only integer arithmetic.

Implicit Representation (Curve in 2D)

Implicit Representation: The points of the curve are represented by a function \(f(x, y) \). The curve is the set of points \(\{(x, y) \mid f(x, y) = 0\} \).

Examples:
- Line of slope 3/2 with y-intercept -1: Satisfies: \(y = \frac{3}{2} x - 1 \).
 - Thus, points \((x, y)\) on the line satisfy: \(3x - 2y - 2 = 0 \).
 - Implicit representation is given by \(f(x, y) = 3x - 2y - 2 \).
- Circle of radius 4 centered at (2,3): Satisfies: \((x - 2)^2 + (y - 3)^2 = 16 \).
 - Thus, points \((x, y)\) lie on the circle if and only if: \((x - 2)^2 + (y - 3)^2 = 16 \).
 - Implicit representation given by \(f(x, y) = (x - 2)^2 + (y - 3)^2 - 16 \).

Curve Representations

Geometric curves in 2-d (and surfaces in 3-d) are typically represented in one of two ways:
- Implicit representation: The zero-set of a function \(f(x, y) \).
- Parametric representation: The \((x, y)\) coordinates are a function of one or more scalar parameters.

Parametric Representation (Curve in 2D)

Parametric Representation: Represents the curve as a set of points \((x(t), y(t))\), as two functions of a parameter \(t \).

Examples:
- Line of slope 3/2 with y-intercept -1: Is the set of points: \(\{(x, y) \mid y = \frac{3}{2} x - 1\} \).
 - We can parameterize the line as a function of \(t = x \), giving \(x(t) = t \) and \(y(t) = \frac{3}{2} t - 1 \), where \(-\infty < t < \infty \).
 - This is only one of many possibilities. Another is: \(x(t) = 2t \) and \(y(t) = 3t - 1 \), where \(-\infty < t < \infty \).
- Circle of radius 4 centered at (2,3): We can parameterize the circle as a function of angle, \(x(t) = 2 + 4 \cos t \) and \(y(t) = 3 + 4 \sin t \), where \(0 \leq t \leq 2\pi \).
Which Representation is Better?

Implicit Representation:
- **Good:** Can be used to represent not only a curve, but the interior and exterior as well.
- **Unit circle:** \(x^2 + y^2 = 1 \).
- **Interior:** \(x^2 + y^2 < 1 \).
- **Exterior:** \(x^2 + y^2 > 1 \).
- **Good:** Easy to intersect, with other objects or with other implicit objects by forming a system of multiple equations.
- **Bad:** Less intuitive.
- **Bad:** Harder to generate points along the curve.

Parametric Representation:
- **Good:** Easy to generate points on the curve or decompose into pieces.
- **Good:** Can easily generate objects of any dimension. E.g., using two parameters you can generate a surface.
- **Bad:** Harder to intersect with other objects.

Line Segment Representation: Implicit

Consider line segment between \(q = (q_x, q_y) \) and \(r = (r_x, r_y) \). Assume integer coordinates.

Let \(d = (d_x, d_y) \) be the vector \(r - q \).

Implicit Representation: By similar triangles we have:

\[
\frac{y - q_y}{d_y} = \frac{x - q_x}{d_x}
\]

Expressing this as a linear equation in \(x \) and \(y \) we have the implicit representation:

\[
(x - q_x)d_y - (y - q_y)d_x = 0
\]

or equivalently:

\[
a x + b y + c = 0,\]

where

\[
a = d_x, \quad b = d_y, \quad c = q_xd_y - q_yd_x.
\]

Line Segment Representation: Explicit

Consider the line segment between points

\(q = (q_x, q_y) \) to \(r = (r_x, r_y) \).

Let \(d = (d_x, d_y) \) be the vector \(r - q \).

Explicit Representation: We can express \(y \) as an explicit function of \(x \) in slope-intercept form:

\[
y = \frac{d_y}{d_x}(x - q_x) + q_y
\]

\[
= \frac{d_y}{d_x}x + \left(q_y - \frac{d_x}{d_y}q_x \right)
\]

\[
= m \cdot x + b.
\]

Line Segment Representation: Parametric

Parametric Representation: This can also be represented parametrically as

\[
p(t) = q + t \cdot d, \quad 0 \leq t \leq 1.
\]

Thus, \(p(0) = q \) and \(p(1) = r \).

In terms of coordinates we have

\[
p(t) = (x(t), y(t)), \quad 0 \leq t \leq 1,
\]

where \(x(t) = q_x + t \cdot d_x \) and \(y(t) = q_y + t \cdot d_y \).

Overview

- Curve Representations
- Line Segment Scan Conversion
 - Naive algorithm
 - DDA
 - Bresenham’s algorithm
- Filling
 - Flood filling
 - Implicit function test
 - Scan-line algorithm

Pixel Coordinate System

We usually think of pixels as small squares. For scan conversion, it is more natural to think of a pixel centers as lying on a coordinate grid coinciding with the pixel centers.
Naive Algorithm for Line Scan-Conversion

Let the line segment be from \(q = (q_x, q_y) \) to \(r = (r_x, r_y) \). As seen before, we can convert this to slope-intercept form as \(y = mx + b \). For each integer \(x \)-coordinate, round to the nearest integer \(y \)-coordinate.

Naive Scan Conversion:

\[
\text{for (int } x = q_x; x \leq r_x; x++)
\begin{align*}
\text{int } y &= \text{round}(m \times x + b) \\
\text{writePixel}(x, y)
\end{align*}
\]

Assumptions:
- \(q_y \leq r_y \): If not, swap \(q \) and \(r \).
- Slope is small: If \(|m| \leq 1 \), then pixels will be too widely scattered. In this case, have loop step along \(y \), rather than \(x \).

One disadvantage of the naïve algorithm is that it involves a floating-point multiplication and floating-point addition with each step.

Bresenham's Algorithm

Also called the midpoint algorithm. A very simple scan conversion algorithm for line segments which only requires:
- integer addition and subtraction
- integer multiplication by 2 (equivalently a left shift by one bit).

Inputs: \(q = (q_x, q_y) \) and \(r = (r_x, r_y) \) with integer coordinates.

Same Assumptions: \(q_y \leq r_y \), \(0 \leq \text{slope} \leq 1 \).

Bresenham's Algorithm: Basics

Initial setup:
- Given \(q \) and \(r \), recall that we can express the line implicitly as \(a \cdot x + b \cdot y + c = 0 \).
- Multiplying by 2 does not change this, so we can instead use \(f(x, y) = 2a \cdot x + 2b \cdot y + 2c = 0 \). (We'll see why later.)

Incremental Step:
- Let \(p = (p_x, p_y) \) denote the previous pixel drawn. (Initially \(p = q \).)
- Since \(0 \leq \text{slope} \leq 1 \), the next pixel is either
 - \(E = (p_x+1, p_y) \) or
 - \(NE = (p_x+1, p_y+1) \).

Decision Value: \(D = f(p) \).

- If \(D \leq 0 \), then line passes on or below \(p \) and so we go to \(E \).
- Otherwise line passes above \(p \) and so we go to \(NE \).

Key Idea: Use value of \(D \) to determine next step. Then update \(D \).
Bresenham’s Algorithm: Update for NE

Decision Value: \(D = f(p') \). Let \(D_{\text{old}} \) be current value.

\[
D = 2a(p+x) + 2b(p_y + \frac{1}{2}) + 2c = 2ap_x + 2b(p_y + \frac{1}{2}) + 2a + 2b + 2c.
\]

How to Update \(D \) for NE?

Let \(D_{\text{new}} \) be the next value of \(D \).

If we go to NE:

\[
D_{\text{new}} = f(p_x + 2, p_y + (3/2)) = 2ap_x + 2b(p_y + (3/2)) + 2c
\]

\[
= 2ap_x + 2b(p_y + \frac{1}{2}) + 2a + 2b + 2c.
\]

Bresenham’s Algorithm: Setup

Decision Value: \(D = f(p') \).

\[
D = 2a(p+x) + 2b(p_y + \frac{1}{2}) + 2c = 2ap_x + 2b(p_y + \frac{1}{2}) + 2a + 2b + 2c.
\]

What is \(D \)'s initial value?

\[
D = f(q_x, q_y) = 2aq_x + 2bq_y + 2a + 2b.
\]

This is 0 because \(q \) lies on the line.

Bresenham’s Algorithm: Full Algorithm

```c
bresenham(Point q, Point r) { // assume q_x <= r_x, and 0 <= slope <= 1
    int dx, dy, D, px, py;
    dx = r_x - q_x; // line width and height
    dy = r_y - q_y;
    D = 2*dy - dx; // initial decision value
    py = q_y;
    for (px = q_x; px <= r_x; px++) { // start at (q_x,q_y)
        writePixel(px, py); // write the current pixel
        if (D <= 0) // below midpoint - go to E
            D += 2*dy; // above midpoint - go to NE
        else
            D += 2*(dy - dx);
        py += 1;
    }
}
```

Note: Only operations needed are integer addition and subtraction and multiplication times 2.

Bresenham’s Algorithm: Final Details

What if assumptions \((q_x <= r_x, 0 <= slope <= 1)\) are not satisfied?

a) \(0 <= slope <= 1 \): The standard version.

b) \(-1 <= slope < 0 \): Similar to standard, but cases are SE and E rather than E and NE. Update rules are similar, but \(py \) is decremented in SE case.

c) \(1 <= slope <= \infty \): Same as a), but with \(x \) and \(y \) reversed.

d) \(-\infty <= slope <= -1 \): Same as b), but with \(x \) and \(y \) reversed.

If \(q \) and \(r \) are not in proper order, then swap them.

Overview

- Curve Representations
- Line Segment Scan Conversion
 - Naïve algorithm
 - DDA
 - Bresenham’s algorithm
- Filling
 - Flood filling
 - Implicit function test
 - Scan-line algorithm

Polygon Scan Conversion

Polygon Scan Conversion: Given a 2-dimensional polygon, determine which pixels lie within this polygon and color (or shade) them. Coordinate Grid: Think of pixels as lying on a coordinate grid coinciding with the pixel centers.
Polygon Scan Conversion

When does a pixel lie within a polygon?

- **Implicit Function**: Test whether the center of each pixel lies on the appropriate side of each of the polygon’s sides.
- **Even-odd Rule**: Count the times a line through the pixel to infinity crosses the polygon’s edge. Odd → Inside; Even → Outside.
- **Winding Number**: Count how many times the boundary "winds" around the pixel. Non-Zero → Inside; Zero → Outside.

These rules produce the same result if the polygon is simple but may differ if boundary self-intersects.

Flood Filling

Flood Filling: Given a region bounded by a set of colored pixels, and a starting pixel within this region, color everything that is reachable within the region from the starting pixel.

Legend:
- White = Uncolored
- Orange = Colored

```cpp
floodFill(x, y) {
    if (readPixel(x, y) ≠ Colored) {
        writePixel(x, y) ← Colored;
        floodFill(x - 1, y);
        floodFill(x + 1, y);
        floodFill(x, y - 1);
        floodFill(x, y + 1);
    }
}
```

Note: This is basically depth-first search, where "Colored" means "Visited".
Flood Filling

Legend: White = Uncolored
Orange = Colored

```c
floodFill(x, y) {
  if (readPixel(x, y) ≠ Colored) {
    writePixel(x, y) ← Colored;
    floodFill(x - 1, y);
    floodFill(x + 1, y);
    floodFill(x, y - 1);
    floodFill(x, y + 1);
  }
}
```

Connectedness

What pixels are "connected"?
- 4-connected
- 8-connected

Easier to "leak out" of a region when using 8-connectedness than in 4-connectedness.

Limitations of Flood Filling

- Unlike the even-odd rule and winding number method, flood filling cannot fill objects with non-simple (self-intersecting) boundaries.
- May visit the same pixel several times (but will color it only once) - wasted effort.
- Requires an ability to read-back the buffer (which is on the GPU). This is slow, since data transfer is optimized to move from the CPU to the GPU.

Implicit Function Test

For convex polygons: Each pixel must lie within halfplanes defined by the edges of the polygon.

- \(e_1 = ax + by + c_1 \)
- \(e_2 = ax + by + c_2 \)
- \(e_3 = ax + by + c_3 \)

Select all pixels (whose centers) satisfy \(ax + by + c_i < 0 \).
Implicit Function Test

Select further the subset of selected pixels for which \(a_2x + b_2y + c_2 < 0 \).

Advantages:
- Great for parallel implementation.
 (One processor per pixel: Pixel Planes architecture)
- Easy to implement.

Disadvantages:
- Works only on convex polygons.
 - Not significant since everyone uses triangles.
- Requires \(k \) tests per pixel, where \(k = \text{number of edges} \).

Scan-line Algorithm

Active Edge Table (AET):
- Changes incrementally from one scan-line to the next.
- Stores the sorted edge sequence intersected by the scan-line.

For every scan-line \(i \):
- Add new entries from Edge_Table\([i]\) (for all starting edges) and set \(x \) coordinate to \(x_0 \).
- Color the interval of pixels between consecutive \(x \)-values
- For each edge in AET do:
 - \(\Delta y = \Delta y - 1 \) // decrement row count
 - \(x = x + \Delta x \) // adjust \(x \)-coordinate
 - if (\(\Delta y = 0 \)) remove entry from AET; // bottom of line

Scan-line Algorithm

AET: \(\{ \text{ab: } (\Delta y = 9, \Delta x = -1, x = 12), \text{ac: } (\Delta y = -12, \Delta x = 0.5, x = 12) \} \)

Scan-line Algorithm

AET: [ab: (Δy = 9 - 1 = 8, Δx = -1, x = 12 + Δx = 11),
ac: (Δy = 12 - 1 = 11, Δx = 0.5, x = 12 + Δx = 12.5)]
y = 1

Scan-line Algorithm

AET: [ab: (Δy = 8 - 1 - 7, Δx = -1, x = 11 + Δx = 10),
ac: (Δy = 11 - 1 - 10, Δx = 0.5, x = 12.5 + Δx = 13)]
y = 2

Scan-line Algorithm

AET: [ab: (Δy = 0, Δx = -1, x = 3),
ac: (Δy = 3, Δx = 0.5, x = 16.5)]
y = 9

Scan-line Algorithm

AET: [bc: (Δy = 3 - 1 = 2, Δx = 5, x = 3 + Δx = 8),
ac: (Δy = 3 - 1 = 2, Δx = 0.5, x = 16.5 + Δx = 17)]
y = 10

Scan-line Algorithm

Final Result

Advantages:
- Incremental, efficient
- Can handle concave, convex polygons

Disadvantages:
- Cannot handle non-simple (self-intersecting) polygons
 (But these are rare in most real-life graphics datasets.)
Summary

- Curve Representations
 - Line Segment Scan Conversion
 - Naïve algorithm
 - DDA
 - Bresenham’s algorithm
- Filling
 - Flood filling
 - Implicit function test
 - Scan-line algorithm