CMSC 427: Chapter 12
Physically-Based Modeling

Reading: Not covered in our text.
Overview:
- Basic Physics
- Kinematics, Kinetics, Springs, and Integration
- Mass-Spring Systems

Overview
- Basic Physics
- Kinematics, Kinetics, Springs, and Integration
- Mass-Spring Systems
Physics: Basic Concepts

Basic Issues:

Kinematics: The study of motion (ignoring forces). How does acceleration affect velocity? How does velocity affect position?
- **Particle:** A point-mass. Body rotation ignored.
- **Rigid body:** Rotation of the body needs to be considered.

Force: Objects change motion only when forces are applied.
- **Contact vs. field forces:** Hitting a baseball vs. gravity or magnetism.
- **Torque:** Force that induces rotation.
- **Environmental sources:** Friction, buoyancy, drag/lift.

Kinetics: (also called Dynamics) The effect of force on motion.

Non-rigid Objects:
- **Joints and constraints:** Rag-doll physics, mass-spring systems.
- **Flexible objects:** Soft bodies, meshes, cloth, hair.

Collisions: Detection and response.

Rigid Body Properties

Rigid Body Physics: For objects under translation/rotation.

Mass: (scalar)
- The amount of matter.
- The degree of **resistance to change** in translational motion (inertial mass).

Center of Mass (or gravity): (point)
- Central point about which rotations occur.
- Need not lie within the body (if the body is nonconvex).

Moment of Inertia: (scalar)
- The resistance to rotational motion about a given axis (scalar form).
- There is a more complex physical quantity, called the **inertial tensor**, which encodes the moment of inertia for all possible rotation axes.

Particle Physics: Simpler than rigid-body physics.
- Center of mass = particle position.
- Rotation is ignored. We may ignore moment of inertia and torque.
Overview

• Basic Physics

• Kinematics, Kinetics, Springs, and Integration

• Mass-Spring Systems

Kinematics: Speed and Velocity

Velocity: Change in position over time.

Average Velocity: Let $s =$ position and $t =$ time. Velocity is the change in position Δs over some time interval Δt:

$$v = \frac{\Delta s}{\Delta t}.$$

Instantaneous velocity: Velocity as a function of time:

$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}.$$

Acceleration: Change in velocity over time.

Average Acceleration:

$$a = \frac{\Delta v}{\Delta t}.$$

Instantaneous acceleration: In general, velocity varies with time:

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2s}{dx^2}.$$

Chapter 12, Slide 5
Copyright © D. M. Mount and A. Varshney
Force

Kinematics:
- The study of motion in the absence of force.

Kinetics:
- How do we integrate forces with mass to determine motion?

Force Basics:
- **Contact force:** from impact, friction, buoyancy, pressure.
- **Field force:** from gravity and electromagnetism.
- **Newton’s Third Law:** Forces come in pairs (action and reaction).

 Usually compute just one, and the other is its negation.

Examples:
- Springs - useful for handling collisions.
- Friction - braking, skidding, sliding.
- Dampers - motion resistors
- Bouyancy - floating

Springs

Springs:
- Elements (usually particles) joined by elastic structures, called springs.
- Springs assumed to follow Hooke’s Law (given below).
- Complex mass-spring systems can be used to model complex objects, such as cloth.
Example: Modeling a Hanging Rope

Example: Modeling a rope as a spring system.
- Springs link particles. The more particles, the smoother the approximation.
- Endpoint locations are fixed. The middle particle positions are determined by a balance between gravity and spring forces.
- Springs try to maintain their rest lengths and so preserve the length of the string.

Springs

Hooke’s Law: for an ideal (linear) spring.
- Let \(p_1 \) and \(p_2 \) be two particles connected by a spring.
- Let \(L = \| p_1 p_2 \| \) be the distance between \(p_1 \) and \(p_2 \).
- Let \(u = \text{unit length directional vector} \) from \(p_1 \) to \(p_2 \).
- Then the spring force is (vector quantity):
 \[
 F_{\text{spring}} = k (L - L_{\text{rest}}) u,
 \]
 where:
 - \(L_{\text{rest}} \) = the length of the spring at rest, and
 - \(k \) = spring constant. (Units: force/length, e.g. lb/ft or Newton/m.)

Application:
- \(F_{\text{spring}} \) is applied to \(p_1 \).
- \(-F_{\text{spring}}\) is applied to \(p_2 \).
- \(L < L_{\text{rest}} \): repels the points.
- \(L > L_{\text{rest}} \): attracts the points.
Integration

integration:
- The process of applying physical laws (in the form of differential equations) to determine the positions, orientations, and velocities of the objects in your scene over time.

numerical integration:
- Approximating differential constraints in small time steps.
- Can deal with complex constraint systems.
- Stability is an issue. Vicious cycle:
 • To increase accuracy, make time steps smaller →
 • Smaller time steps require more total steps →
 • More steps imply more accumulated error → less accuracy.
- Common methods:
 • Euler integration (fast and simple).
 • Verlet integration (slower, but more accurate).

Stability

stability: Numerical integration involves many time steps, each incurring a small error. These can accumulate over time, resulting in wildly inaccurate results.

Example: Consider a particle that is orbiting a central point. Each step moves the particle perpendicular to the center. Over time the particle spirals outwards.
Euler Integration

Good
Simple and well known, easy to implement.

Bad
Not very accurate.

How it Works
Consider the following vector quantities:
- \(F(t) \): Force acting on particle at time \(t \).
- \(a(t) \): Acceleration at time \(t \). Computed from force and mass:
 \[a(t) = \frac{F(t)}{m} \]
 where \(m \) is mass.
- \(v(t) \): Velocity at time \(t \).
- \(s(t) \): Position at time \(t \).

Euler update rules:
\[
\begin{align*}
\Delta s(t) & \equiv s(t + \Delta t) - s(t) \\
\Delta v(t) & \equiv v(t + \Delta t) - v(t) \\
\Delta a(t) & \equiv a(t + \Delta t) - a(t) \\
\end{align*}
\]

Euler Integration: Pseudocode

Initialization:
- \(p.pos \leftarrow p.initialPosition() \)
- \(p.veloc \leftarrow p.initialVelocity() \)

Update:
(Compute state at time \(t + \Delta t \) from values at time \(t \))
- \(p.pos \leftarrow p.pos + \Delta t \cdot p.veloc \)
- \(p.veloc \leftarrow p.veloc + \Delta t \cdot p.force/p.mass \)
- \(p.force \leftarrow p.updateForces() \)

Advantages:
- Easy to implement.
- Very fast.

Disadvantages:
- Not very accurate: Errors can accumulate rapidly.
- Inconsistency: Velocities and positions can be inconsistent.
- Instability: Can be unstable for stiff equations.
Verlet Integration

Verlet Integration:
- More accurate than the Euler integration.
- The next step is based on the prior two steps.

Verlet Integration Rule:
- Let s(t) be current position and s(t−Δt) be previous position.
- Let a(t) be the current acceleration (determined by a(t) = F(t)/m).
- Update rule:
 \[s(t + Δt) = 2 \cdot s(t) - s(t - Δt) + \frac{d^2}{dt^2} s(t) \Delta t^2 \]
 \[= 2 \cdot s(t) - s(t - Δt) + a(t) \Delta t^2. \]
- For cloth, we may want to add some damping to this by decreasing the displacement. Give a small positive damping factor δ:
 \[s(t + Δt) = s(t) + (1 - δ)(s(t) - s(t - Δt)) + a(t) \Delta t^2. \]

Advantages:
- More accurate than Euler integration.

Disadvantages:
- Need an Euler integrator to obtain the 2nd time step.
- Time step sizes need to be uniform.

Verlet Integration: Pseudocode

Initialization:
\[
p.\text{oldPos} \leftarrow p.\text{pos} \leftarrow p.\text{initialPosition}() \]

Update Rule: (Compute state at time t+Δt from prior two states)
\[
\text{temp} \leftarrow p.\text{pos} \\
p.\text{pos} \leftarrow p.\text{pos} + (1 - δ) \cdot (p.\text{pos} - p.\text{oldPos}) + p.\text{accel} \cdot (Δt^2) \\
p.\text{oldPos} \leftarrow \text{temp} \\
p.\text{force} \leftarrow p.\text{updateForces}() \\
p.\text{accel} \leftarrow p.\text{force} / p.\text{mass}
\]

Advantages:
- More accurate than Euler integration.

Disadvantages:
- Need an Euler integrator to obtain the 2nd time step.
- Time step sizes need to be uniform.
Overview

- Basic Physics
- Kinematics, Kinetics, Springs, and Integration
 - Mass-Spring Systems

Mass-Spring Systems

Mass-Spring System:
- Used for modeling string, cloth, hair, etc.
- Models local interactions between a collection of particles.
- Implemented by creating a network of spring forces, each of which links pairs of particles.

Image Michael Kass
Mass-Spring Systems: Types of Forces

Structural forces:
- Enforce invariant properties of the system.
- Ideally, these should be hard constraints, but it is easier to implement them as forces.
- Examples: Fixing the length of a string. A cloth should not pass through itself.

Internal deformation forces:
- Enforce deformational properties of the system (e.g., stiffness vs. flexibility).
- Example: Strings deform easily. A diving board is much stiffer.

External forces:
- Enforce environmental forces imposed on the system.
- Examples: Collisions with external objects, gravity, wind.

Example: Hair

Simple Hair Model:
- **Topology:** Linear sequence of particles.
- **Structural forces:** Enforce distances between particles, and anchor root to skin.
- **Deformation forces:** Proportional to the angle between segments to enforce stiffness.
- **External forces:** Gravity, wind.
Example: Cloth

Cloth Model:

Topology: Three types of springs. Let \([x, y]\) be a point of the mesh.

Structural Constraints: To: \([x \pm 1, y], [x, y \pm 1]\).
Resist stretching of the cloth.

Shearing Constraints: To: \([x \pm 1, y \pm 1]\).
Resist shearing, and preserve orthogonality of the mesh.

Bending Constraints: To: \([x \pm 2, y], [x, y \pm 2]\).
Resist bending, enforce stiffness.

Cloth Simulation

Satisfying Constraints:
- By Hooke’s Law, a spring exerts a force to restore its rest length.
- We will cheat, by computing a correction vector, which restores each spring to its exact rest length.
- Each vertex is subject to many such pulls, and thus its final position not at rest, but the average of these effects.

Fixing Spring Constraint: Given a spring \(s = (p_1, p_2)\)

```plaintext
Vector v ← p_2 - p_1 // vector from p_1 to p_2
float d ← ||v|| // distance from p_1 to p_2
float d_0 ← s.restLength // spring’s length at rest
Vector c ← (1 - d_0/d) · v // correction vector
Vector h ← c / 2 // half the correction vector
p_1 ← p_1 + h // adjust point positions
p_2 ← p_2 - h
```

Repeated for each spring. May be repeated a few times.
Cloth Simulation: Programming Tips

Implementation Tips:
- In addition to the spring constraints, particles are subject to other forces, which can be updated using Euler or Verlet integration.
- Each particle computes any collision with objects in the scene. Such a collision induces a force on the particle (i.e., increases its acceleration) in the direction of the object’s velocity.
- Gravity also induces a force, which increases the particle’s downward velocity.
- Some cloth particles may be defined as unmovable, which means that their positions never change. Used to anchor the cloth.

Rendering Tips:
- Render the cloth using GL_QUADS or GLTriangle_STRIP.
- To obtain smooth shading, compute each vertex normal as the average the normal vectors of the incident faces.
- Disable backface culling.

Summary

Summary:
- Basic Physics
- Kinematics, Kinetics, Springs, and Integration
- Mass-Spring Systems