Finding closest pair of points

Problem
Given a set of points \(\{p_1, \ldots, p_n\}\) find the pair of points \(\{p_i, p_j\}\) that are closest together.
Brute force gives an $O(n^2)$ algorithm: just check every pair of points.

Can we do it faster? Seems like no: don’t we have to check every pair?

In fact, we can find the closest pair in $O(n \log n)$ time.

What’s a reasonable first step?
Split the points with line L so that half the points are on each side.

Recursively find the pair of points closest in each half.
Merge: the hard case

Let \(d = \min\{d_{\text{left}}, d_{\text{right}}\} \).

- \(d \) would be the answer, except maybe \(L \) split a close pair!
If there is a pair \(\{p_i, p_j\} \) with \(\text{dist}(p_i, p_j) < d \) that is split by the line, then both \(p_i \) and \(p_j \) must be within distance \(d \) of \(L \).

Let \(S_y \) be an array of the points in that region, sorted by decreasing \(y \)-coordinate value.
• Let S_y be an array of the points in that region, sorted by decreasing y-coordinate value.

• S_y might contain all the points, so we can’t just check every pair inside it.

Theorem

Suppose $S_y = p_1, \ldots, p_m$. If $\text{dist}(p_i, p_j) < d$ then $j - i \leq 15$.

In other words, if two points in S_y are close enough in the plane, they are close in the array S_y.

Divide the region up into squares with sides of length \(d/2 \):

How many points in each box?

At most 1 because each box is completely contained in one half and no two points in a half are closer than \(d \).
Divide the region up into squares with sides of length $d/2$:

How many points in each box?

At most 1 because each box is completely contained in one half and no two points in a half are closer than d.
Suppose 2 points are separated by > 15 indices.

- Then, at least 3 full rows separate them (the packing shown is the smallest possible).
- But the height of 3 rows is $> 3d/2$, which is $> d$.
- So the two points are farther than d apart.
Therefore, we can scan S_y for pairs of points separated by $< d$ in linear time.

ClosestPair(Px, Py):
 if $|Px| == 2$: return dist(Px[1], Px[2]) // base

 $d_1 = \text{ClosestPair(FirstHalf(Px, Py))}$ // divide
 $d_2 = \text{ClosestPair(SecondHalf(Px, Py))}$
 $d = \min(d_1, d_2)$

 $Sy = \text{points in Py within } d \text{ of } L$ // merge
 For $i = 1, \ldots, |Sy|$: For $j = 1, \ldots, 15$:
 $d = \min(\text{dist}(Sy[i], Sy[j]), d)$
 Return d
Total Running Time:

- Divide set of points in half each time: $O(\log n)$ depth recursion
- Merge takes $O(n)$ time.
- Recurrence: $T(n) \leq 2T(n/2) + cn$
- Same as MergeSort $\implies O(n \log n)$ time.