CMSC 451: Local Search & Randomized Algorithms

Slides By: Carl Kingsford

Department of Computer Science
University of Maryland, College Park

Based on §12.1, 12.2, 13.2 of Algorithm Design by Kleinberg & Tardos.
What if we have a hard problem but we can’t find an approximation algorithm for it?

Local search is a general class of algorithms that is often useful in practice.

Unfortunately, we can almost never prove that they will return a good solution.
Optimization problems

- A set \mathcal{C} of possible solutions

- A cost $\text{cost}(c)$ for each $c \in \mathcal{C}$.

- We’re looking for a minimum/maximal cost $c \in \mathcal{C}$.
Energy Landscapes

Better

Energy landscapes
Take a series of "steps," improving the solution a little bit each time.

No guarantee you'll end up at the best solution...
Local Search:

- A set of “feasible solutions”: \mathcal{C}.

- A neighbor relation between some of these solutions: $S \sim S'$ for some pairs $S, S' \in \mathcal{C}$.

- $\mathcal{N}(S) = \{S' : S \sim S'\}$: the neighbors of solution S.
Local Search Algorithm Schema:

1. Define a set of feasible solutions C.
2. Define a neighbor relation \sim on these sets.
3. Let S_0 be some feasible solution.
4. Let $S = S_0$.
5. Repeatedly choose some $S' \in \mathcal{N}(S)$, and let $S = S'$.
Example: Vertex Cover

<table>
<thead>
<tr>
<th>Vertex Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find the minimum size vertex cover for graph G.</td>
</tr>
</tbody>
</table>

Define a **state** S as a set of vertices that is a vertex cover.

Two states are neighbors if they differ by **adding** or **deleting** a vertex.

Algorithm:

While there is a neighbor S' of S with lower cost, let the new S be the lowest cost neighbor.
Gradient Descent: Vertex Cover

Empty Graph:
Gradient Descent: Vertex Cover

Empty Graph:
Empty Graph:

\[\begin{array}{cccc}
 \bigcirc & \bigcirc & \bigcirc & \bigcirc \\
 \bigcirc & \bigcirc & \bigcirc & \bigcirc \\
 \bigcirc & \bigcirc & \bigcirc & \bigcirc \\
 \bigcirc & \bigcirc & \bigcirc & \bigcirc \\
\end{array} \]
If the center node is removed, then we have to stop.
Physical systems also typically have an “energy.”

The Gibbs-Boltzmann function says the probability of a system of being in a state of energy E is:

$$e^{-E/(kT)}$$

where $T > 0$ is the temperature of the system.
Gibbs-Boltzmann
Metropolis Algorithm:

\[S = \text{an initial solution} \]

While not done:
 \[\text{Choose } S' \in \mathcal{N}(S) \]
 If \(\text{cost}(S') \leq \text{cost}(S) \):
 Set \(S = S' \)
 Else:
 Delta = \(\text{cost}(S') - \text{cost}(S) \)
 With probability \(\exp(-\text{Delta} / (kT)) \):
 Let \(S = S' \)
 EndIf
EndWhile
High values of T means you jump around a lot.

Low values of T mean you never increase the cost.

Simulated Annealing: **Idea**: Start with high T and reduce it as time progresses.

Some cooling schedule determines how to change T.

Lot of work into finding cooling schedules that work in practice...
Simulated annealing used all the time in practice

No guarantees, but often gets good solutions

(Of ten does not, too, though.)
Randomized Algorithms
Randomized Algorithms

- Allow our algorithms to flip some random coins to make their choices.

- May require that the optimum solution is found with expected good runtime.

- Or may require that we always run in polynomial time, and we find the optimum solution with high probability.

- Often run in expectation faster than
You’ve probably seen probabilistic algorithms of the first type: quicksort.

When the list of numbers is already sorted, a naive deterministic algorithm performs very bad ($O(n^2)$).

A solution to this: randomly permute the input numbers.

Then the chance that you are in a “bad” case is small.
Global Minimum Cut

Given an **undirected** graph G find a partition of the nodes of G into two **non-empty** sets A and B such that the number of edges that have 1 endpoint in A and 1 endpoint in B is minimized.

Like minimum cut, but in an undirected graph, and we don’t specify s and t.
• Let s be some node in G.

• In the global minimum cut, s must be separated from something.

• Try all $n - 1$ choices for that something as t, and use network flow to compute the minimum $s - t$ cut.

• (Replace each undirected edge by two, anti-parallel, directed edges.)

• Cost is $n - 1$ network flow computations.
Contraction

Contraction step: choose an edge and merge its endpoints.
Contraction Algorithm:

While G contains more than 2 nodes:
Choose an edge e uniformly at random
Contract e, replacing its endpoints
with a new node w

Each new node is really a *supernode* that “contains” a number of original nodes.

Once we have a graph with only 2 supernodes, the supernodes define the cut.
Let F be a global minimum cut.

Suppose $|F| = k$.

Every node in G must have degree $\geq k$. Why?

Therefore, $|E| \geq \frac{1}{2}kn$.

The chance that we contract an edge in F in the first step is at most:

$$\frac{k}{\frac{1}{2}kn} = \frac{2}{n}$$
After j contractions there are $n - j$ supernodes.

Each super node has degree $\geq k$. Why?

There are at least $\frac{1}{2} k(n - j)$ edges, and the probability that we choose one from F to contract is:

$$\frac{k}{\frac{1}{2} k(n - j)} = \frac{2}{n - j}. $$
The contraction algorithm stops after \(n - 2 \) iterations.

It will return the global minimum cut if none of the \(n - 2 \) contractions picked one of the edges in \(F \).

Def. \(\mathcal{E}_i = \text{even that an edge of } F \text{ was not contracted in step } i \).

- \(\Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n} \)
- \(\Pr[\mathcal{E}_{j+1} \mid \mathcal{E}_1 \cap \mathcal{E}_2 \cap \ldots \cap \mathcal{E}_j] \geq 1 - \frac{2}{n-j} \)

Probability of Success: \(\Pr[\mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-2}] \)
Unravel Conditional Expectations

Theorem

The probability that the contraction algorithm returns the minimum cut is $\geq 1/\binom{n}{2}$.

$$
\Pr[\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{n-2}] \\
= \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdots \Pr[\mathcal{E}_{j+1} \mid \mathcal{E}_1 \cap \cdots \cap \mathcal{E}_j] \cdots \\
\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{n-j}\right) \cdots \left(1 - \frac{2}{3}\right) \\
= \frac{n-2}{n} \cdots \frac{n-3}{n-1} \cdots \frac{1}{3} \\
= \frac{2}{n(n-1)} = \left(\frac{n}{2}\right)^{-1} \Box
$$
Repeat the contraction algorithm

Repeat the algorithm \(\binom{n}{2} \ln n \) times.

The probability that we fail to find the global minimum cut every time is:

\[
\left(1 - \frac{1}{\binom{n}{2}} \right)^{\binom{n}{2} \ln n} \leq \frac{1}{n}.
\]
Summary

- Local Search often simple and works well in practice, despite it being hard to prove anything about.

- Randomization often yields simpler, faster algorithms.
Class Summary

Basic Graph Algorithms: BFS, DFS, TreeGrowing, testing bipartiteness, topological sort, stable marriage

Greedy Methods: exchange argument, stays-ahead argument, interval scheduling, minimizing lateness, optimal caching, shortest path, MST, interval partitioning

Divide and Conquer: counting inversions, closest pair of points, integer multiplication

Dynamic Programming: Weighted interval scheduling, memoization, subset sum, knapsack, RNA folding, sequence alignment, shortest paths

Network Flow: Ford-Fulkerson, Max-flow=Min-cut, Image segmentation, edge disjoint paths, circulation with demands, bipartite matching, linear programming

NP-completeness: NP, 3-SAT, Vertex Cover, Independent Set, Graph Coloring, 3-dimensional matching, Set Cover, Hamiltonian Cycle, TSP, Subset Sum, co-NP

Other: Approximation algorithms (vertex cover, TSP, makespan), local search (simulated annealing), randomized algorithms