Chapter 2
Representations for Classical Planning

Dana S. Nau
University of Maryland
Fall 2009
Quick Review of Classical Planning

- Classical planning requires all eight of the restrictive assumptions:
 A0: Finite
 A1: Fully observable
 A2: Deterministic
 A3: Static
 A4: Attainment goals
 A5: Sequential plans
 A6: Implicit time
 A7: Offline planning
Representations: Motivation

- In most problems, far too many states to try to represent all of them explicitly as s_0, s_1, s_2, \ldots
- Represent each state as a set of features
 - e.g.,
 - a vector of values for a set of variables
 - a set of ground atoms in some first-order language L
- Define a set of operators that can be used to compute state-transitions
- Don’t give all of the states explicitly
 - Just give the initial state
 - Use the operators to generate the other states as needed
Outline

- Representation schemes
 - Classical representation
 - Set-theoretic representation
 - State-variable representation
 - Examples: DWR and the Blocks World
 - Comparisons
Classical Representation

Start with a first-order language

- Language of first-order logic
- Restrict it to be *function-free*
- Finitely many predicate symbols and constant symbols, but *no* function symbols

Example: the DWR domain

- Locations: \(l_1, l_2, \ldots \)
- Containers: \(c_1, c_2, \ldots \)
- Piles: \(p_1, p_2, \ldots \)
- Robot carts: \(r_1, r_2, \ldots \)
- Cranes: \(k_1, k_2, \ldots \)
Classical Representation

- **Atom**: predicate symbol and args
 - Use these to represent both fixed and dynamic relations
 - adjacent(l, l') attached(p, l) belong(k, l)
 - occupied(l) at(r, l)
 - loaded(r, c) unloaded(r)
 - holding(k, c) empty(k)
 - in(c, p) on(c, c')
 - top(c, p) top(pallet, p)

- **Ground** expression: contains no variable symbols - e.g., in($c1, p3$)

- **Unground** expression: at least one variable symbol - e.g., in($c1, x$)

- **Substitution**: $\theta = \{x_1 \leftarrow v_1, \ x_2 \leftarrow v_2, \ldots, \ x_n \leftarrow v_n\}$
 - Each x_i is a variable symbol; each v_i is a term

- **Instance** of e: result of applying a substitution θ to e
 - Replace variables of e simultaneously, not sequentially
States

- *State*: a set s of ground atoms
 - The atoms represent the things that are true in one of Σ’s states
 - Only finitely many ground atoms, so only finitely many possible states

\[s_1 = \{ \text{attached}(p1,\text{loc1}), \text{in}(c1,p1), \text{in}(c3,p1), \text{top}(c3,p1), \text{on}(c3,c1), \text{on}(c1,\text{pallet}), \text{attached}(p2,\text{loc1}), \text{in}(c2,p2), \text{top}(c2,p2), \text{on}(c2,\text{pallet}), \text{belong}(\text{crane1,loc1}), \text{empty}(\text{crane1}), \text{adjacent}(\text{loc1,loc2}), \text{adjacent}(\text{loc2,loc1}), \text{at}(r1,\text{loc2}), \text{occupied}(\text{loc2}), \text{unloaded}(r1) \}. \]
Operators

- **Operator**: a triple $o=(\text{name}(o), \text{precond}(o), \text{effects}(o))$
 - **precond(o): **preconditions**
 » literals that must be true in order to use the operator
 - **effects(o): **effects**
 » literals the operator will make true
 - **name(o): **a syntactic expression of the form $n(x_1, \ldots, x_k)$
 » n is an *operator symbol* - must be unique for each operator
 » (x_1, \ldots, x_k) is a list of every variable symbol (parameter) that appears in o
 - Purpose of name(o) is so we can refer unambiguously to instances of o

- Rather than writing each operator as a triple, we’ll usually write it in the following format:

\[
\text{take}(k, l, c, d, p) \\
\begin{align*}
\text{;; crane } k \text{ at location } l \text{ takes } c \text{ off of } d \text{ in pile } p \\
\text{precond: } & \text{belong}(k, l), \text{attached}(p, l), \text{empty}(k), \text{top}(c, p), \text{on}(c, d) \\
\text{effects: } & \text{holding}(k, c), \neg \text{empty}(k), \neg \text{in}(c, p), \neg \text{top}(c, p), \neg \text{on}(c, d), \text{top}(d, p)
\end{align*}
\]
move(r, l, m)
 ;; robot r moves from location l to location m
 precond: adjacent(l, m), at(r, l), \negoccupied(m)
 effects: at(r, m), occupied(m), \negoccupied(l), \negat(r, l)

load(k, l, c, r)
 ;; crane k at location l loads container c onto robot r
 precond: belong(k, l), holding(k, c), at(r, l), unloaded(r)
 effects: empty(k), \negholding(k, c), loaded(r, c), \negunloaded(r)

unload(k, l, c, r)
 ;; crane k at location l takes container c from robot r
 precond: belong(k, l), at(r, l), loaded(r, c), empty(k)
 effects: \negempty(k), holding(k, c), unloaded(r), \negloaded

put(k, l, c, d, p)
 ;; crane k at location l puts c onto d in pile p
 precond: belong(k, l), attached(p, l), holding(k, c), top(d, p)
 effects: \negholding(k, c), empty(k), in(c, p), top(c, p), on(c, d), \negtop(d, p)

take(k, l, c, d, p)
 ;; crane k at location l takes c off of d in pile p
 precond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)
 effects: holding(k, c), \negempty(k), \negin(c, p), \negtop(c, p), \negon(c, d), top(d, p)
An action is a ground instance (via substitution) of an operator

Note that an action's name identifies it unambiguously

- take(crane1, loc1, c3, c1, p1)
Notation

- Let S be a set of literals. Then
 - $S^+ = \{\text{atoms that appear positively in } S\}$
 - $S^- = \{\text{atoms that appear negatively in } S\}$

- Let a be an operator or action. Then
 - $\text{precond}^+(a) = \{\text{atoms that appear positively in } a's\text{ preconditions}\}$
 - $\text{precond}^-(a) = \{\text{atoms that appear negatively in } a's\text{ preconditions}\}$
 - $\text{effects}^+(a) = \{\text{atoms that appear positively in } a's\text{ effects}\}$
 - $\text{effects}^-(a) = \{\text{atoms that appear negatively in } a's\text{ effects}\}$

```
\text{take}(k, l, c, d, p)

\text{;; crane } k \text{ at location } l \text{ takes } c \text{ off of } d \text{ in pile } p
\text{precond: } \text{belong}(k, l), \text{attached}(p, l), \text{empty}(k), \text{top}(c, p), \text{on}(c, d)
\text{effects: } \text{holding}(k, c), \neg \text{empty}(k), \neg \text{in}(c, p), \neg \text{top}(c, p), \neg \text{on}(c, d), \text{top}(d, p)
```

- $\text{effects}^+(\text{take}(k, l, c, d, p)) = \{\text{holding}(k, c), \text{top}(d, p)\}$
- $\text{effects}^-(\text{take}(k, l, c, d, p)) = \{\text{empty}(k), \text{in}(c, p), \text{top}(c, p), \text{on}(c, d)\}$
Applicability

- An action a is *applicable* to a state s if s satisfies $\text{precond}(a)$,
 - i.e., if $\text{precond}^+(a) \subseteq s$ and $\text{precond}^-(a) \cap s = \emptyset$

- An action:

 \begin{align*}
 \text{take}(\text{crane1, loc1, c3, c1, p1}) \\
 \text{precond: } & \text{belong(crane, loc1),} \\
 & \text{attached(p1, loc1),} \\
 & \text{empty(crane1), top(c3, p1),} \\
 & \text{on(c3, c1)} \\
 \text{effects: } & \text{holding(crane1, c3),} \\
 & \neg \text{empty(crane1),} \\
 & \neg \text{in(c3, p1),} \neg \text{top(c3, p1),} \\
 & \neg \text{on(c1, c1), top(c1, p1)}
 \end{align*}

- A state it’s applicable to

 \[s_1 = \{\text{attached}(p1, \text{loc1}), \text{in}(c1, p1), \]
 \[\text{in}(c3, p1), \text{top}(c3, p1), \text{on}(c3, c1), \]
 \[\text{on}(c1, \text{pallet}), \text{attached}(p2, \text{loc1}), \]
 \[\text{in}(c2, p2), \text{top}(c2, p2), \text{on}(c2, \text{pallet}), \]
 \[\text{belong}(\text{crane1, loc1}), \]
 \[\text{empty}(\text{crane1}), \text{adjacent}(\text{loc1, loc2}), \]
 \[\text{adjacent}(\text{loc2, loc1}), \text{at}(r1, \text{loc2}), \]
 \[\text{occupied}(\text{loc2, unloaded}(r1)) \]
Executing an Applicable Action

- Remove a’s negative effects, and add a’s positive effects

\[\gamma(s, a) = (s - \text{effects}^{-}(a)) \cup \text{effects}^{+}(a) \]

\[
\text{take} \left(\text{crane1}, \text{loc1}, \text{c3}, \text{c1}, \text{p1} \right)
\]
- \text{precond: } \text{belong} \left(\text{crane}, \text{loc1} \right), \text{attached} \left(\text{p1}, \text{loc1} \right), \text{empty} \left(\text{crane1} \right), \text{top} \left(\text{c3}, \text{p1} \right), \text{on} \left(\text{c3}, \text{c1} \right)
- \text{effects: } \text{holding} \left(\text{crane1}, \text{c3} \right), \neg \text{empty} \left(\text{crane1} \right), \neg \text{in} \left(\text{c3}, \text{p1} \right), \neg \text{top} \left(\text{c3}, \text{p1} \right), \neg \text{on} \left(\text{c1}, \text{c1} \right), \text{top} \left(\text{c1}, \text{p1} \right)

\[s_2 = \{ \text{attached} \left(\text{p1}, \text{loc1} \right), \text{in} \left(\text{c1}, \text{p1} \right), \text{in} \left(\text{c3}, \text{p1} \right), \text{top} \left(\text{c3}, \text{p1} \right), \text{on} \left(\text{c3}, \text{c1} \right), \text{on} \left(\text{c1}, \text{pallet} \right), \text{attached} \left(\text{p2}, \text{loc1} \right), \text{in} \left(\text{c2}, \text{p2} \right), \text{top} \left(\text{c2}, \text{p2} \right), \text{on} \left(\text{c2}, \text{pallet} \right), \text{belong} \left(\text{crane1}, \text{loc1} \right), \text{empty} \left(\text{crane1} \right), \text{adjacent} \left(\text{loc1}, \text{loc2} \right), \text{occupied} \left(\text{loc2}, \text{unloaded} \left(\text{r1} \right) \right), \text{holding} \left(\text{crane1}, \text{c3} \right), \text{top} \left(\text{c1}, \text{p1} \right) \} \]
Planning Problems

- Given a planning domain (language L, operators O)
 - **Statement** of a planning problem: a triple $P = (O, s_0, g)$
 - O is the collection of operators
 - s_0 is a state (the initial state)
 - g is a set of literals (the goal formula)
 - Planning problem: $\mathcal{P} = (\Sigma, s_0, S_g)$
 - $s_0 = \text{initial state}$
 - $S_g = \text{set of goal states}$
 - $\Sigma = (S, A, \gamma)$ is a state-transition system
 - $S = \{\text{all sets of ground atoms in } L\}$
 - $A = \{\text{all ground instances of operators in } O\}$
 - $\gamma = \text{the state-transition function determined by the operators}$
- I’ll often say “planning problem” when I mean the statement of the problem
Plans and Solutions

- **Plan**: any sequence of actions \(\sigma = \langle a_1, a_2, \ldots, a_n \rangle \) such that each \(a_i \) is an instance of an operator in \(O \)

- The plan is a solution for \(P=(O,s_0,g) \) if it is executable and achieves \(g \)
 - i.e., if there are states \(s_0, s_1, \ldots, s_n \) such that
 - \(\gamma(s_0, a_1) = s_1 \)
 - \(\gamma(s_1, a_2) = s_2 \)
 - \(\ldots \)
 - \(\gamma(s_{n-1}, a_n) = s_n \)
 - \(s_n \) satisfies \(g \)
Example

- Let $P_1 = (O, s_1, g_1)$, where
 - $O = \{\text{the four DWR operators given earlier}\}$

\[
\begin{align*}
 &O = \{\text{the four DWR operators given earlier}\} \\
 &g_1 = \{\text{loaded}(r1,c3), \text{at}(r1,\text{loc2})\} \\
 &s_1 = \{\text{attached}(p1,\text{loc1}), \text{in}(c1,p1), \text{in}(c3,p1), \text{top}(c3,p1), \text{on}(c3,c1), \text{on}(c1,\text{pallet}), \text{attached}(p2,\text{loc1}), \text{in}(c2,p2), \text{top}(c2,p2), \text{on}(c2,\text{pallet}), \text{belong}(\text{crane1,loc1}), \text{empty}(\text{crane1}), \text{adjacent}(\text{loc2,loc1}), \text{adjacent}(\text{loc2,loc1}), \text{at}(r1,\text{loc2}), \text{occupied}(\text{loc2}), \text{unloaded}(r1)\}.
\end{align*}
\]
Example, continued

- P_1 has infinitely many solutions
- Here are three of them:

 \[\langle \text{take}(\text{crane1}, \text{loc1}, c3, c1, p1), \text{move}(r1, \text{loc2}, \text{loc1}), \text{move}(r1, \text{loc1}, \text{loc2}), \text{move}(r1, \text{loc2}, \text{loc1}), \text{load}(\text{crane1}, \text{loc1}, c3, r1), \text{move}(r1, \text{loc1}, \text{loc2}) \rangle \]

 \[\langle \text{take}(\text{crane1}, \text{loc1}, c3, c1, p1), \text{move}(r1, \text{loc2}, \text{loc1}), \text{load}(\text{crane1}, \text{loc1}, c3, r1), \text{move}(r1, \text{loc1}, \text{loc2}) \rangle \]

 \[\langle \text{move}(r1, \text{loc2}, \text{loc1}), \text{take}(\text{crane1}, \text{loc1}, c3, c1, p1), \text{load}(\text{crane1}, \text{loc1}, c3, r1), \text{move}(r1, \text{loc1}, \text{loc2}) \rangle \]

- They each produce this state:
Example, continued

- The first one is *redundant*
 - Can remove actions and still have a solution

\[
\langle \text{take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1), move(r1,loc1,loc2), move(r1,loc2,loc1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)} \rangle
\]

\[
\langle \text{take(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1), move(r1,loc1,loc2), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)} \rangle
\]

\[
\langle \text{move(r1,loc2,loc1), take(crane1,loc1,c3,c1,p1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)} \rangle
\]

- The 2nd and 3rd are *irredundant*
- They also are *shortest*
 - No shorter solutions exist
Set-Theoretic Representation

- Like classical representation, but restricted to propositional logic
 - Equivalent to a classical representation in which all of the atoms are ground

States:
- Instead of ground atoms, use propositions (boolean variables):

\[
\{\text{on}(c1,\text{pallet}), \text{on}(c1,r1), \text{on}(c1,c2), \ldots, \text{at}(r1,l1), \text{at}(r1,l2), \ldots\}
\]

\[
\downarrow
\]

\[
\{\text{on-c1-pallet}, \text{on-c1-r1}, \text{on-c1-c2}, \ldots, \text{at-r1-l1}, \text{at-r1-l2}, \ldots\}
\]
Set-Theoretic Representation, continued

No operators, just actions:

- Instead of ground atoms, use propositions
- Instead of negative effects, use a delete list
- If you have negative preconditions, create new atoms to represent them
 - E.g., instead of using \(\neg \text{foo} \) as a precondition, use \(\text{not-foo} \)
- To use both \(\text{foo} \) and \(\text{not-foo} \):
 - Actions that delete one should add the other, and vice versa

\[
\begin{align*}
\text{take}(\text{crane1}, \text{loc1}, \text{c3}, \text{c1}, \text{p1}) \\
\text{precond:} & \quad \text{belong(\text{crane}, \text{loc1})}, \\
& \quad \text{attached(\text{p1}, \text{loc1})}, \text{empty(\text{crane1})}, \\
& \quad \text{top(\text{c3}, \text{p1})}, \text{on(\text{c3}, \text{c1})} \\
\text{effects:} & \quad \text{holding(\text{crane1}, \text{c3})}, \\
& \quad \neg \text{empty(\text{crane1})}, \\
& \quad \neg \text{in(\text{c3}, \text{p1})}, \neg \text{top(\text{c3}, \text{p1})}, \neg \text{on(\text{c1}, \text{c1})}, \\
& \quad \text{top(\text{c1}, \text{p1})} \\
\downarrow \\
\text{take-crane1-loc1-c3-c1-p1} \\
\text{precond:} & \quad \text{belong-\text{crane1-loc1}}, \\
& \quad \text{attached-p1-\text{loc1}}, \text{empty-\text{crane1}}, \\
& \quad \text{top-c3-p1}, \text{on-c3-c1} \\
\text{delete:} & \quad \text{empty-\text{crane1}}, \\
& \quad \text{in-c3-p1}, \text{top-c3-p1}, \text{on-c3-p1} \\
\text{add:} & \quad \text{holding-\text{crane1-c3}}, \text{top-c1-p1}
\end{align*}
\]
Exponential Blowup

- Suppose a classical operator contains n atoms and each atom has arity k
- Suppose the language contains c constant symbols
- Then there are c^{nk} ground instances of the operator
 - Hence c^{nk} set-theoretic actions
- Can reduce this by removing operator instances in which the arguments don’t make sense
 - $\text{take}(\text{crane1, crane1, crane1, crane1, crane1, crane1})$
 - Worst case is still exponential
State-Variable Representation

- Use ground atoms for properties that do not change, e.g., adjacent(loc1, loc2)
- For properties that can change, assign values to state variables
 - Like fields in a record structure
- Classical and state-variable representations take similar amounts of space
 - Each can be translated into the other in low-order polynomial time

\[\text{move}(r, l, m) \]
\[;; \text{robot } r \text{ at location } l \text{ moves to an adjacent location } m \]
\[\text{precond: } rloc(r) = l, \text{adjacent}(l, m) \]
\[\text{effects: } rloc(r) \leftarrow m \]

\[s_1 = \{ \text{top}(p1) = c3, \]
\[\text{cpos}(c3) = c1, \]
\[\text{cpos}(c1) = \text{pallet}, \]
\[\text{holding}(\text{crane1}) = \text{nil}, \]
\[rloc(r1) = \text{loc2}, \]
\[\text{loaded}(r1) = \text{nil}, \text{...} \} \]
Example: The Blocks World

- Infinitely wide table, finite number of children’s blocks
- Ignore where a block is located on the table
- A block can sit on the table or on another block
- There’s a robot gripper that can hold at most one block

- Want to move blocks from one configuration to another
 - e.g.,

```
initial state  goal

  a  b  c
  a  b  e
  c  d
```

- Like a special case of DWR with one location, one crane, some containers, and many more piles than you need
- I’ll give classical, set-theoretic, and state-variable formulations
 - For the case where there are five blocks
Classical Representation: Symbols

- **Constant symbols:**
 - The blocks: a, b, c, d, e

- **Predicates:**
 - ontable\((x) \) - block \(x \) is on the table
 - on\((x,y) \) - block \(x \) is on block \(y \)
 - clear\((x) \) - block \(x \) has nothing on it
 - holding\((x) \) - the robot hand is holding block \(x \)
 - handempty - the robot hand isn’t holding anything
Classical Operators

unstack\((x,y)\)
Precond: \(on(x,y), clear(x), handempty\)
 Effects: \(\neg on(x,y), \neg clear(x), \neg handempty,\)
 \(holding(x), clear(y)\)

stack\((x,y)\)
Precond: \(holding(x), clear(y)\)
 Effects: \(\neg holding(x), \neg clear(y),\)
 \(on(x,y), clear(x), handempty\)

pickup\((x)\)
Precond: \(ontable(x), clear(x), handempty\)
 Effects: \(\neg ontable(x), \neg clear(x),\)
 \(\neg handempty, holding(x)\)

putdown\((x)\)
Precond: \(holding(x)\)
 Effects: \(\neg holding(x), ontable(x),\)
 \(clear(x), handempty\)
For five blocks, there are 36 propositions

Here are 5 of them:

- **ontable-a** - block a is on the table
- **on-c-a** - block c is on block a
- **clear-c** - block c has nothing on it
- **holding-d** - the robot hand is holding block d
- **handempty** - the robot hand isn’t holding anything
Set-Theoretic Actions

- There are fifty different actions
- Here are four of them:

 unstack-c-a
 - Pre: on-c-a, clear-c, handempty
 - Del: on-c-a, clear-c, handempty
 - Add: holding-c, clear-a

 stack-c-a
 - Pre: holding-c, clear-a
 - Del: holding-c, clear-a
 - Add: on-c-a, clear-c, handempty

 pickup-c
 - Pre: ontable-c, clear-c, handempty
 - Del: ontable-c, clear-c, handempty
 - Add: holding-c

 putdown-c
 - Pre: holding-c
 - Del: holding-c
 - Add: ontable-c, clear-c, handempty
State-Variable Representation: Symbols

- Constant symbols:
 - a, b, c, d, e of type block
 - 0, 1, table, nil of type other

- State variables:
 - \(\text{pos}(x) = y \) if block \(x \) is on block \(y \)
 - \(\text{pos}(x) = \text{table} \) if block \(x \) is on the table
 - \(\text{pos}(x) = \text{nil} \) if block \(x \) is being held
 - \(\text{clear}(x) = 1 \) if block \(x \) has nothing on it
 - \(\text{clear}(x) = 0 \) if block \(x \) is being held or has another block on it
 - \(\text{holding} = x \) if the robot hand is holding block \(x \)
 - \(\text{holding} = \text{nil} \) if the robot hand is holding nothing
State-Variable Operators

unstack(x : block, y : block)
 Precond: pos(x)=y, clear(y)=0, clear(x)=1, holding=nil
 Effects: pos(x)=nil, clear(x)=0, holding=x, clear(y)=1

stack(x : block, y : block)
 Precond: holding=x, clear(x)=0, clear(y)=1
 Effects: holding=nil, clear(y)=0, pos(x)=y, clear(x)=1

pickup(x : block)
 Precond: pos(x)=table, clear(x)=1, holding=nil
 Effects: pos(x)=nil, clear(x)=0, holding=x

putdown(x : block)
 Precond: holding=x
 Effects: holding=nil, pos(x)=table, clear(x)=1
Expressive Power

- Any problem that can be represented in one representation can also be represented in the other two.
- Can convert in linear time and space in all cases except one:
 - Exponential blowup when converting to set-theoretic.
Comparison

- Classical representation
 - The most popular for classical planning, partly for historical reasons

- Set-theoretic representation
 - Can take much more space than classical representation
 - Useful in algorithms that manipulate ground atoms directly
 » e.g., planning graphs (Chapter 6), satisfiability (Chapters 7)
 - Useful for certain kinds of theoretical studies

- State-variable representation
 - Equivalent to classical representation in expressive power
 - Less natural for logicians, more natural for engineers
 - Useful in non-classical planning problems as a way to handle numbers, functions, time