Chapter 9
Heuristics in Planning

Dana S. Nau

University of Maryland
Fall 2009
Planning as Nondeterministic Search

Abstract-search(u)
 if Terminal(u) then return(u)
 $u \leftarrow \text{Refine}(u)$;; refinement step
 $B \leftarrow \text{Branch}(u)$;; branching step
 $B' \leftarrow \text{Prune}(B)$;; pruning step
 if $B' = \emptyset$ then return(failure)
 \textbf{nondeterministically choose } $v \in B'$
 return(Abstract-search(v))
end
Making it Deterministic

```plaintext
Depth-first-search(u)
  if Terminal(u) then return(u)
  u ← Refine(u) ;; refinement step
  B ← Branch(u) ;; branching step
  C ← Prune(B) ;; pruning step
  while C ≠ ∅ do
    v ← Select(C) ;; node-selection step
    C ← C − {v}
    π ← Depth-first-search(v)
    if π ≠ failure then return(π)
  return(failure)
end
```
Node-Selection Heuristic

- Suppose we’re searching a **tree** in which each edge \((s,s')\) has a cost \(c(s,s')\)
 - If \(p\) is a path, let \(c(p) = \text{sum of the edge costs}\)
 - For classical planning, this is the length of \(p\)

- For every state \(s\), let
 - \(g(s) = \text{cost of the path from } s_0 \text{ to } s\)
 - \(h^*(s) = \text{least cost of all paths from } s \text{ to goal nodes}\)
 - \(f^*(s) = g(s) + h^*(s) = \text{least cost of all paths from } s_0 \text{ to goal nodes that go through } s\)

- Suppose \(h(s)\) is an estimate of \(h^*(s)\)
 - Let \(f(s) = g(s) + h(s)\)
 » \(f(s)\) is an estimate of \(f^*(s)\)
 - \(h\) is **admissible** if for every state \(s\), \(0 \leq h(s) \leq h^*(s)\)
 - If \(h\) is admissible then \(f\) is a lower bound on \(f^*\)
The A* Algorithm

- A* on trees:

 loop

 choose the leaf node \(s \) such that \(f(s) \) is smallest

 if \(s \) is a solution then return it and exit

 expand it (generate its children)

- On graphs, A* is more complicated

 - additional machinery to deal with multiple paths to the same node

- If a solution exists (and certain other conditions are satisfied), then:

 - If \(h(s) \) is admissible, then A* is guaranteed to find an optimal solution

 - The more “informed” the heuristic is (i.e., the closer it is to \(h^* \)), the smaller the number of nodes A* expands

 - If \(h(s) \) is within \(c \) of being admissible, then A* is guaranteed to find a solution that’s within \(c \) of optimal
Heuristic Functions for Planning

- $\Delta^*(s,p)$: minimum distance from state s to a state that contains p
- $\Delta^*(s,s')$: minimum distance from state s to a state that contains all of the literals in s'
 - Hence $h^*(s) = \Delta^*(s,g)$ is the minimum distance from s to the goal
- For $i = 0, 1, 2, \ldots$ we will define the following functions:
 - $\Delta_i(s,p)$: an estimate of $\Delta^*(s,p)$
 - $\Delta_i(s,s')$: an estimate of $\Delta^*(s,s')$
 - $h_i(s) = \Delta_i(s,g)$, where g is the goal
Heuristic Functions for Planning

- \(\Delta_0(s,s') = \) what we get if we pretend that
 - Negative preconditions and effects don’t exist
 - The cost of achieving a set of propositions \(\{p_1, \ldots, p_n\} \)
 is the sum of the costs of achieving each \(p_i \) separately

- Let \(p \) be a proposition and \(g \) be a set of propositions. Then

\[
\Delta_0(s, p) = \begin{cases}
0, & \text{if } p \in s \\
\infty, & \text{if } p \notin s \text{ and } \forall a \in A, p \notin \text{effects}^+(a) \\
\min_a \{1 + \Delta_0(s, \text{precond}^+(a)) | p \in \text{effects}^+(a), \text{ otherwise} \}
\end{cases}
\]

\[
\Delta_0(s, g) = \begin{cases}
0, & \text{if } g \subseteq s, \\
\sum_{p \in g} \Delta_0(s, p), & \text{otherwise}
\end{cases}
\]

- \(\Delta_0(s,s') \) is not admissible, but we don’t necessarily care
- Usually we’ll want to do a depth-first search, not an A* search
 - This already sacrifices admissibility
Computing Δ_0

- Given s, can compute $\Delta_0(s,p)$ for every proposition p
 - Forward search from s
 - U is a set of sets of propositions

\[
\text{Delta}(s)
\]
\[
\text{for each } p \text{ do: if } p \in s \text{ then } \Delta_0(s,p) \leftarrow 0, \text{ else } \Delta_0(s,p) \leftarrow \infty
\]
\[
U \leftarrow \{s\}
\]
iterate
\[
\text{for each } a \text{ such that } \exists u \in U, \text{precond}(a) \subseteq u \text{ do}
\]
\[
U \leftarrow \{u\} \cup \text{effects}^+(a)
\]
\[
\text{for each } p \in \text{effects}^+(a) \text{ do}
\]
\[
\Delta_0(s,p) \leftarrow \min\{\Delta_0(s,p), 1 + \sum_{q \in \text{precond}(a)} \Delta_0(s,q)\}
\]
until no change occurs in the above updates

- From this, can compute $h_0(s) = \Delta_0(s,g) = \sum_{p \in g} \Delta_0(s,p)$
Heuristic Forward Search

Heuristic-forward-search(\(\pi, s, g, A\))
 if \(s\) satisfies \(g\) then return \(\pi\)
 options \(\leftarrow\) \(\{a \in A \mid a\) applicable to \(s\}\)
 for each \(a \in\) options do Delta(\(\gamma(s, a)\))
 while options \(\neq\) \(\emptyset\) do
 \(a \leftarrow\) argmin\(\{\Delta_0(\gamma(s, a), g) \mid a \in\) options\}\)
 options \(\leftarrow\) options \(-\) \{a\}
 \(\pi' \leftarrow\) Heuristic-forward-search(\(\pi.a, \gamma(s, a), g, A\))
 if \(\pi' \neq\) failure then return(\(\pi'\))
 return(failure)

- This is depth-first search, so admissibility is irrelevant
- This is roughly how the HSP planner works
 - First successful use of an A*-style heuristic in classical planning
Heuristic Backward Search

- HSP can also search backward

```
Backward-search(\pi, s_0, g, A)
  if s_0 satisfies g then return(\pi)
  options ← \{a ∈ A | a relevant for g\}
  while options ≠ ∅ do
    a ← argmin\{\Delta_0(s_0, γ^{-1}(g, a)) | a ∈ options\}
    options ← options − \{a\}
    π' ← Backward-search(a.\pi, s_0, γ^{-1}(g, a), A)
    if π' ≠ failure then return(π')
  end
  return failure
```
An Admissible Heuristic

\[\Delta_1(s, p) = \begin{cases}
0, & \text{if } p \in s \\
\infty, & \text{if } p \notin s \text{ and } \forall a \in A, p \notin \text{effects}^+(a) \\
\min_a \{1 + \Delta_1(s, \text{precond}^+(a)) | p \in \text{effects}^+(a)\}, & \text{otherwise}
\end{cases} \]

\[\Delta_1(s, g) = \begin{cases}
0, & \text{if } g \subseteq s \\
\max_{p \in g} \Delta_1(s, p), & \text{otherwise}
\end{cases} \]

- \[\Delta_1(s, s') = \text{what we get if we pretend that} \]
 - Negative preconditions and effects don’t exist
 - The cost of achieving a set of preconditions \{p_1, \ldots, p_n\} is the max of the costs of achieving each \(p_i \) separately

- This heuristic is admissible; thus it could be used with \(A^* \)
 - It is not very informed

Question for the class: Why do I have a ‘+’ here when the book doesn’t?
A More Informed Heuristic

- Δ_2: instead of computing the minimum distance to each p in g, compute the minimum distance to each pair $\{p,q\}$ in g:
 - Analogy to GraphPlan’s mutex conditions on pairs of literals in a level
- Let p and q be propositions, and g be a set of propositions. Then

$$
\Delta_2(s, p) = \begin{cases}
0, & \text{if } p \in s \\
\infty, & \text{if } p \notin s \text{ and } \forall a \in A, p \notin \text{effects}^+(a) \\
\min_a \{1 + \Delta_2(s, \text{precond}^+(a)) \mid p \in \text{effects}^+(a)\}, & \text{otherwise}
\end{cases}
$$

$$
\Delta_2(s, \{p,q\}) = \min \left\{ \begin{array}{l}
\min_a \{1 + \Delta_2(s, \text{precond}^+(a)) \mid \{p,q\} \subseteq \text{effects}^+(a)\} \\
\min_a \{1 + \Delta_2(s, \{q\} \cup \text{precond}^+(a)) \mid p \in \text{effects}^+(a)\} \\
\min_a \{1 + \Delta_2(s, \{p\} \cup \text{precond}^+(a)) \mid q \in \text{effects}^+(a)\}
\end{array} \right\}
$$

$$
\Delta_2(s, g) = \begin{cases}
0, & \text{if } g \subseteq s, \\
\max_{p,q} \Delta_2(s, \{p,q\}) \mid \{p,q\} \subseteq g, & \text{otherwise}
\end{cases}
$$
More Generally, …

- Remember that $\Delta^*(s,g)$ is the true minimal distance from s to g. Can compute this (at great computational cost) using the following recursive equation:

$$
\Delta^*(s, g) = \begin{cases}
0 & \text{if } g \subseteq s, \\
\infty & \text{if } \forall a \in A, a \text{ is not relevant for } g, \text{ and} \\
\min_a \{1 + \Delta^*(s, \gamma^{-1}(g, a)) | a \text{ relevant for } g\} & \text{otherwise.}
\end{cases}
$$

- Can define $\Delta_k(s, g) = "k\text{-ary distance}"$ to each k-tuple $\{p_1, p_2, \ldots, p_k\}$ in g.
 - Analogy to k-ary mutex conditions

$$
\Delta_k(s, g) = \begin{cases}
0 & \text{if } g \subseteq s, \\
\infty & \text{if } \forall a \in A, a \text{ is not relevant for } g, \\
\min_a \{1 + \Delta_k^*(s, \gamma^{-1}(g, a)) | a \text{ relevant for } g\} & |g| \leq k, \\
\max_{g'} \{\Delta_k(s, g') | g' \subseteq g \text{ and } |g'| = k\} & \text{otherwise.}
\end{cases}
$$

Error in the book: it says Δ^* here.
\[\Delta_k(s, g) = \begin{cases}
0, & \text{if } g \subseteq s, \\
\infty, & \text{if } \forall a \in A, a \text{ is not relevant for } g, \\
\min_a \{1 + \Delta^* (s, \gamma^{-1}(g, a)) \mid a \text{ relevant for } g\} & \text{if } |g| \leq k, \\
\max_{g'} \{\Delta_k(s, g') \mid g' \subseteq g \text{ and } |g'| = k\} & \text{otherwise.}
\end{cases} \]
Complexity of Computing the Heuristic

- Takes time $\Omega(n^k)$
- If $k \geq \max(|g|, \max \{|\text{precond}(a)| : a \text{ is an action}\})$ then computing $\Delta_k(s,g)$ is as hard as solving the entire planning problem
Getting Heuristic Values from a Planning Graph

Recall how GraphPlan works:

\[\text{loop}\]

\textit{Graph expansion:} \hspace{5mm} \text{this takes polynomial time}

extend a “planning graph” forward from the initial state
until we have achieved a necessary (but insufficient) condition
for plan existence\[\text{Solution extraction:} \hspace{5mm} \text{this takes exponential time}\]

search backward from the goal, looking for a correct plan
if we find one, then return it

\text{repeat}
Using Planning Graphs to Compute $h(s)$

- In the graph, there are alternating layers of ground literals and actions.
- The number of “action” layers is a lower bound on the number of actions in the plan.
- Construct a planning graph, starting at s.
- $\Delta^g(s,g) =$ level of the first layer that “possibly achieves” g.
- $\Delta^g(s,g)$ is close to $\Delta_2(s,g)$.
 - $\Delta_2(s,g)$ counts each action individually, but $\Delta^g(s,g)$ groups independent actions together in a layer.
The FastForward Planner

- Use a heuristic function similar to \(h(s) = \Delta g(s, g) \)
 - Some ways to improve it (I’ll skip the details)
- Don’t want an A*–style search (takes too much memory)
- Instead, use a greedy procedure:

 until we have a solution, do
 expand the current state \(s \)
 \(s := \) the child of \(s \) for which \(h(s) \) is smallest
 (i.e., the child we think is closest to a solution)
The FastForward Planner

- Use a heuristic function similar to $h(s) = \Delta^g(s, g)$
 - Some ways to improve it (I’ll skip the details)
- Don’t want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

 until we have a solution, do
 expand the current state s
 $s :=$ the child of s for which $h(s)$ is smallest
 (i.e., the child we think is closest to a solution)
The FastForward Planner

- Use a heuristic function similar to $h(s) = \Delta g(s,g)$
 - Some ways to improve it (I’ll skip the details)
- Don’t want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

 until we have a solution, do
 expand the current state s
 $s :=$ the child of s for which $h(s)$ is smallest
 (i.e., the child we think is closest to a solution)
The FastForward Planner

- Use a heuristic function similar to $h(s) = \Delta^g(s, g)$
 - Some ways to improve it (I’ll skip the details)
- Don’t want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

 until we have a solution, do
 expand the current state s
 $s :=$ the child of s for which $h(s)$ is smallest
 (i.e., the child we think is closest to a solution)
The FastForward Planner

- Use a heuristic function similar to $h(s) = \Delta^g(s,g)$
 - Some ways to improve it (I’ll skip the details)
- Don’t want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

 until we have a solution, do
 expand the current state s
 $s :=$ the child of s for which $h(s)$ is smallest
 (i.e., the child we think is closest to a solution)

- There are some ways FF improves on this
 - e.g. a way to escape from local minima
 » breadth-first search, stopping when a node with lower cost is found
- Can’t guarantee how fast it will find a solution, or how good a solution it will find
 - However, it works pretty well on many problems
AIPS-2000 Planning Competition

- FastForward did quite well
- In the this competition, all of the planning problems were classical problems

Two tracks:
 - “Fully automated” and “hand-tailored” planners
 - FastForward participated in the fully automated track
 - It got one of the two “outstanding performance” awards
 - Large variance in how close its plans were to optimal
 - However, it found them very fast compared with the other fully-automated planners
2002 International Planning Competition

- Among the automated planners, FastForward was roughly in the middle.
- LPG (graphplan + local search) did much better, and got a “distinguished performance of the first order” award.

It’s interesting to see how FastForward did in problems that went beyond classical planning:
 - Numbers, optimization

Example: Satellite domain, numeric version
 - A domain inspired by the Hubble space telescope (a lot simpler than the real domain, of course)
 - A satellite needs to take observations of stars
 - Gather as much data as possible before running out of fuel
 - Any amount of data gathered is a solution
 - Thus, FastForward always returned the null plan.
2004 International Planning Competition

● FastForward’s author was one of the competition chairs
 ♦ Thus FastForward did not participate
Plan-Space Planning

- In plan-space planning, \textit{refinement} = selecting the next flaw to work on
Serializing and AND/OR Tree

- The search space is an AND/OR tree

- Deciding what flaw to work on next = serializing this tree (turning it into a state-space tree)
 - at each AND branch, choose a child to expand next, and delay expanding the other children
One Serialization

```
partial plan π

action a_1

partial plan π_1

a before b

partial plan π_{11}

action a_2
partial plan π_{11}

action a_3
partial plan π_{11}

action a_4
partial plan π_{11}

b before a

partial plan π_{12}

action a_2
partial plan π_{11}

action a_3
partial plan π_{11}

action a_4
partial plan π_{11}
```
Another Serialization
Why Does This Matter?

- Different refinement strategies produce different serializations
 - the search spaces have different numbers of nodes
- In the worst case, the planner will search the entire serialized search space
- The smaller the serialization, the more likely that the planner will be efficient

- One pretty good heuristic: fewest alternatives first
A Pretty Good Heuristic

- Fewest Alternatives First (FAF)
 - Choose the flaw that has the smallest number of alternatives
 - In this case, unestablished precondition g_1
How Much Difference Can the Refinement Strategy Make?

- Case study: build an AND/OR graph from repeated occurrences of this pattern:

- Example:
 - number of levels \(k = 3 \)
 - branching factor \(b = 2 \)

- Analysis:
 - Total number of nodes in the AND/OR graph is \(n = \Theta(b^k) \)
 - How many nodes in the best and worst serializations?
Case Study, Continued

- The best serialization contains $\Theta(b^{2^k})$ nodes
- The worst serialization contains $\Theta(2^k b^{2^k})$ nodes
 - The size differs by an exponential factor
 - But both serializations are *doubly* exponentially large
- This limits how good *any* flaw-selection heuristic can do
 - To do better, need good ways to do node selection, branching, pruning