Chapter 14
Temporal Planning

Dana S. Nau

University of Maryland
Fall 2009
Temporal Planning

- Motivation: want to do planning in situations where actions
 - have nonzero duration
 - may overlap in time
- Need an explicit representation of time

- In Chapter 10 we studied a “temporal” logic
 - Its notion of time is too simple: a sequence of discrete events
 - Many real-world applications require continuous time
 - How to get this?
Temporal Planning

- The book presents two equivalent approaches:
 1. Use logical atoms, and extend the usual planning operators to include temporal conditions on those atoms
 » Chapter 14 calls this the “state-oriented view”
 2. Use state variables, and specify change and persistence constraints on the state variables
 » Chapter 14 calls this the “time-oriented view”
- In each case, the chapter gives a planning algorithm that’s like a temporal-planning version of PSP
The Time-Oriented View

- We’ll concentrate on the “time-oriented view”: Sections 14.3.1–14.3.3
 - It produces a simpler representation
 - State variables seem better suited for the task
- States not defined explicitly
 - Instead, can compute a state for any time point, from the values of the state variables at that time
State Variables

- A state variable is a partially specified function telling what is true at some time t
 - $\text{cpos}(c1) : \text{time} \rightarrow \text{containers} \cup \text{cranes} \cup \text{robots}$
 - Tells what $c1$ is on at time t
 - $\text{rloc}(r1) : \text{time} \rightarrow \text{locations}$
 - Tells where $r1$ is at time t
- Might not ever specify the entire function

- $\text{cpos}(c)$ refers to a collection of state variables
 - We’ll be sloppy and call it a state variable rather than a collection of state variables
Example

- DWR domain, with
 - robot r_1
 - container c_1
 - ship Uranus
 - locations l_{oc1}, l_{oc2}
 - cranes $crane_{2}$, $crane_{4}$
- r_1 is in l_{oc1} at time t_1, leaves l_{oc1} at time t_2, enters l_{oc2} at time t_3, leaves l_{oc2} at time t_4, enters l at time t_5
- c_1 is in $pile1$ until time t_6, held by $crane_{2}$ from t_6 to t_7, sits on r_1 until t_8, held by $crane_{4}$ until t_9, and sits on p until t_{10} or later
- Uranus stays at $dock5$ from t_{11} to t_{12}
Temporal Assertions

- Temporal assertion:
 - **Event**: an expression of the form $x@t : (v_1, v_2)$
 - At time t, x changes from v_1 to $v_2 \neq v_1$
 - **Persistence condition**: $x@[t_1, t_2) : v$
 - $x = v$ throughout the interval $[t_1, t_2)$
 - where
 - t, t_1, t_2 are constants or temporal variables
 - v, v_1, v_2 are constants or object variables

- Note that the time intervals are semi-open
 - Why are they?
Temporal Assertions

- Temporal assertion:
 - **Event**: an expression of the form \(x@t : (v_1, v_2) \)
 - At time \(t \), \(x \) changes from \(v_1 \) to \(v_2 \neq v_1 \)
 - **Persistence condition**: \(x@[t_1,t_2] : v \)
 - \(x = v \) throughout the interval \([t_1,t_2]\)
 - where
 - \(t, t_1, t_2 \) are constants or temporal variables
 - \(v, v_1, v_2 \) are constants or object variables

- Note that the time intervals are semi-open
 - Why are they?
 - To prevent potential confusion about \(x \)’s value at the endpoints
Chronicles

- **Chronicle**: a pair $\Phi = (F, C)$
 - F is a finite set of temporal assertions
 - C is a finite set of constraints
 - temporal constraints and object constraints
 - C must be consistent (i.e., there must exist variable assignments that satisfy it)

- **Timeline**: a chronicle for a single state variable

- The book writes F and C in a calligraphic font
 - Sometimes I will, more often I’ll just use italics
Example

Timeline for \texttt{rloc}(r1):

\[
\begin{align*}
\{ & \quad \text{\texttt{rloc}(r1)}@t_1 : (l_1, \text{loc1}), \\
& \text{\texttt{rloc}(r1)}@[t_1, t_2) : \text{loc1}, \\
& \text{\texttt{rloc}(r1)}@t_2 : (\text{loc1}, l_2), \\
& \text{\texttt{rloc}(r1)}@t_3 : (l_3, \text{loc2}), \\
& \text{\texttt{rloc}(r1)}@[t_3, t_4) : \text{loc2}, \\
& \text{\texttt{rloc}(r1)}@t_4 : (\text{loc2}, l_4), \\
& \text{\texttt{rloc}(r1)}@t_5 : (l_5, \text{loc3}) \} , \\
\{ & \quad \text{\texttt{adjacent}(l_1, \text{loc1}), \text{\texttt{adjacent}(loc1, l_2),} \\
& \text{\texttt{adjacent}(l_3, \text{loc2}), \text{\texttt{adjacent}(loc2, l_4), \text{\texttt{adjacent}(l_5, loc3),} \\
& t_1 < t_2 < t_3 < t_4 < t_5 \}).
\end{align*}
\]

Inconsistency in the book between Figure 14.5 and Example 14.9.
C-consistency

- A timeline \((F,C)\) is \emph{c-consistent} (chronicle-consistent) if
 - \(C\) is consistent, and
 - Every pair of assertions in \(F\) are either disjoint or they refer to the same value and/or time points:
 - If \(F\) contains both \(x@[t_1,t_2]:v_1\) and \(x@[t_3,t_4]:v_2\), then \(C\) must entail \(\{t_2 \leq t_3\}, \{t_4 \leq t_1\}, \text{ or } \{v_1 = v_2\}\)
 - If \(F\) contains both \(x@t:(v_1,v_2)\) and \(x@[t_1,t_2]:v\), then \(C\) must entail \(\{t < t_1\}, \{t_2 < t\}, \{v = v_2, t_1 = t\}, \text{ or } \{t_2 = t, v = v_1\}\)
 - If \(F\) contains both \(x@t:(v_1,v_2)\) and \(x@t':(v'_{1},v'_{2})\), then \(C\) must entail \(\{t \neq t'\} \text{ or } \{v_1 = v'_{1}, v_2 = v'_{2}\}\)

- \((F,C)\) is c-consistent iff every timeline in \((F,C)\) is c-consistent
- The book calls this consistency, not c-consistency
- I’m using a different name because it is a stronger requirement than ordinary mathematical consistency
 - The separation constraints must actually be entailed by \(C\)
 - It’s sort of like saying that \((F,C)\) contains no threats
Let \((F, C)\) include the timelines given earlier, plus some additional constraints:

- \(t_1 \leq t_6, \ t_7 < t_2, \ t_3 \leq t_8, \ t_9 < t_4, \ \text{attached}(p, \text{loc2})\)

Above, I’ve drawn the entire set of time constraints.

All pairs of temporal assertions are either disjoint or refer to the same value at the same point, so \((F, C)\) is c-consistent.
Support and Enablers

- Let α be either $x@t:(v,v')$ or $x@[t,t'):v$
 - Note that α requires $x = v$ either at t or just before t
- Intuitively, a chronicle $\Phi = (F,C)$ supports α if
 - F contains an assertion β that we can use to establish $x = v$ at some time $s < t$,
 - β is called the support for α
 - and if it’s consistent with Φ for v to persist over $[s,t)$ and for α be true
- Formally, $\Phi = (F,C)$ supports α if
 - F contains an assertion β of the form $\beta = x@s:(w',w)$ or $\beta = x@[s',s):w$, and
 - \exists separation constraints C' such that the following chronicle is c-consistent:
 - $(F \cup \{x@[s,t):v, \alpha\}, C \cup C' \cup \{w=v, s < t\})$
 - C' can either be absent from Φ or already in Φ
- The chronicle $\delta = (\{x@[s,t):v, \alpha\}, C' \cup \{w=v, s < t\})$ is an enabler for α
 - Analogous to a causal link in PSP
- Just as there could be more than one possible causal link in PSP, there can be more than one possible enabler
Example

\[\beta_1 = \text{rloc}(r1)@t_2:(\text{loc1, routes}) \]

\[\beta_2 = \text{rloc}(r1)@t_4:(\text{loc2, routes}) \]

- Let \(\Phi \) be as shown
- Then \(\Phi \) supports
 \[\alpha_1 = \text{rloc}(r1)@t:(\text{routes, loc3}) \]
 in two different ways:
 - \(\beta_1 \) establishes \(\text{rloc}(r1) = \text{routes} \) at time \(t_2 \)
 - this can support \(\alpha_1 \) if we constrain \(t_2 < t < t_3 \)
 - enabler is \(\delta_1 = (\{\text{rloc}(r1)@[t_2,t):\text{routes}, \alpha_1\}, \{t_2 < t < t_3\}) \)
 - \(\beta_2 \) establishes \(\text{rloc}(r1) = \text{routes} \) at time \(t_4 \)
 - this can support \(\alpha_1 \) if we constrain \(t_4 < t < t_5 \)
 - enabler is \(\delta_2 = (\{\text{rloc}(r1)@[t_4,t):\text{routes}, \alpha_1\}, \{t_4 < t < t_5\}) \)
Enabling Several Assertions at Once

- $\Phi = (F, C)$ supports a set of assertions $E = \{\alpha_1, \ldots, \alpha_k\}$ if both of the following are true:
 - $F \cup E$ contains a support β_i for α_i other than α_i itself
 - There are enablers $\delta_1, \ldots, \delta_k$ for $\alpha_1, \ldots, \alpha_k$ such that the chronicle $\Phi \cup \delta_1 \cup \ldots \cup \delta_k$ is c-consistent

- Note that some of the assertions in E may support each other!
- $\phi = \{\delta_1, \ldots, \delta_k\}$ is an enabler for E
Example

- Let Φ be as shown
- Let α_1 be the same as before: $\alpha_1 = rloc(r1)@t:(\text{routes, loc3})$
- Let $\alpha_2 = rloc(r1)@[t',t''):\text{loc3}$

Then Φ supports $\{\alpha_1, \alpha_2\}$ in four different ways:
 - As before, for α_1 we can use either β_1 and δ_1 or β_2 and δ_2
 - We can support α_2 with $\beta_3 = rloc(r1)@t_5:(\text{routes, l})$
 - Enabler is $\delta_3 = (\{rloc(r1)@[t_5,t'):\text{loc3, } \alpha_2\}, \{l = \text{loc3, } t_5 < t'\})$
 - Or we can support α_2 with α_1
 - If we supported α_1 with β_1 and enabled it with δ_1, the enabler for α_2 is $\delta_4 = (\{rloc(r1)@[t,t'):\text{loc3, } \alpha_2\}, \{t < t' < t_3\})$
 - If we supported α_1 with β_1 and enabled it with δ_2, then replace t_3 with t_5 in δ_4
One Chronicle Supporting Another

- Let $\Phi' = (F', C')$ be a chronicle, and suppose $\Phi = (F, C)$ supports F'.
- Let $\delta_1, \ldots, \delta_k$ be all the possible enablers of Φ'
 - For each δ_i, let $\delta'_i = \delta_i \cup C'$
- If there is a δ'_i such that $\Phi \cup \delta'_i$ is c-consistent,
 - Then Φ supports Φ', and δ'_i is an enabler for Φ'
 - If $\delta'_i \subseteq \Phi$, then Φ entails Φ'
- The set of all enablers for Φ' is $\theta(\Phi/\Phi') = \{\delta'_i : \Phi \cup \delta'_i$ is c-consistent\}
Chronicles as Planning Operators

- Chronicle planning operator: a pair $o = (\text{name}(o), (F(o), C(o)))$, where
 - $\text{name}(o)$ is an expression of the form $o(t_s, t_e, \ldots, v_1, v_2, \ldots)$
 - o is an operator symbol
 - $t_s, t_e, \ldots, v_1, v_2, \ldots$ are all the temporal and object variables in o
 - $(F(o), C(o))$ is a chronicle

- Action: a (partially) instantiated operator, a

- If a chronicle Φ supports $(F(a), C(a))$, then a is applicable to Φ
 - a may be applicable in several ways, so the result is a set of chronicles
 - $\gamma(\Phi, a) = \{ \Phi \cup \phi \mid \phi \in \theta(a/\Phi) \}$
Example: Operator for Moving a Robot

\[
\text{move}(t_s, t_e, t_1, t_2, r, l, l') = \\
\{ \\
\text{rloc}(r) @ t_s : (l, \text{routes}), \\
\text{rloc}(r) @ [t_s, t_e) : \text{routes}, \\
\text{rloc}(r) @ t_e : (\text{routes, } l'), \\
\text{contains}(l) @ t_1 : (r, \text{empty}), \\
\text{contains}(l') @ t_2 : (\text{empty, } r), \\
t_s < t_1 < t_2 < t_e, \\
\text{adjacent}(l, l') \}\n\]
Applying a Set of Actions

- Just like several temporal assertions can support each other, several actions can also support each other
 - Let \(\pi = \{a_1, \ldots, a_k\} \) be a set of actions
 - Let \(\Phi_\pi = \bigcup_i (F(a_i), C(a_i)) \)
 - If \(\Phi \) supports \(\Phi_\pi \) then \(\pi \) is applicable to \(\Phi \)
 - Result is a set of chronicles
 \[
 \gamma(\Phi, \pi) = \{ \Phi \cup \phi \mid \phi \in \theta(\Phi_\pi/\Phi) \}
 \]
- Example:
 - Suppose \(\Phi \) asserts that at time \(t_0 \), robots \(r1 \) and \(r2 \) are at adjacent locations \(\text{loc1} \) and \(\text{loc2} \)
 - Let \(a_1 \) and \(a_2 \) be as shown
 - Then \(\Phi \) supports \(\{a_1, a_2\} \) with
 \[
 l_1 = \text{loc1}, \ l_2 = \text{loc2}, \ l'_1 = \text{loc2}, \ l'_2 = \text{loc1}, \ \\
 t_0 < t_s < t_1 < t'_2, \ t_0 < t'_s < t'_1 < t_2
 \]
Domains and Problems

- Temporal planning domain: a pair \(D = (\Lambda_\Phi, O) \)
 - \(O = \{ \text{all chronicle planning operators in the domain} \} \)
 - \(\Lambda_\Phi = \{ \text{all chronicles allowed in the domain} \} \)

- Temporal planning problem on \(D \): a triple \(P = (D, \Phi_0, \Phi_g) \)
 - \(D \) is the domain
 - \(\Phi_0 \) and \(\Phi_g \) are initial chronicle and goal chronicle
 - \(O \) is the set of chronicle planning operators

- Statement of the problem \(P \): a triple \(P = (O, \Phi_0, \Phi_g) \)
 - \(O \) is the set of chronicle planning operators
 - \(\Phi_0 \) and \(\Phi_g \) are initial chronicle and goal chronicle

- Solution plan: a set of actions \(\pi = \{ a_1, \ldots, a_n \} \) such that at least one chronicle in \(\gamma(\Phi_0, \pi) \) entails \(\Phi_g \)
As in plan-space planning, there are two kinds of flaws:
- Open goal: a tqe that isn’t yet enabled
- Threat: an enabler that hasn’t yet been incorporated into Φ

$$CP(\Phi, G, K, \pi)$$

if $G = K = \emptyset$ then return(π)

perform the two following steps in any order
 if $G \neq \emptyset$ then do
 select any $\alpha \in G$
 if $\theta(\alpha/\Phi) \neq \emptyset$ then return($CP(\Phi, G - \{\alpha\}, K \cup \{\theta(\alpha/\Phi)\}, \pi)$)
 else do
 $relevant \leftarrow \{a \mid a \text{ contains a support for } \alpha\}$
 if $relevant = \emptyset$ then return(failure)
 nondeterministically choose $a \in relevant$
 return($CP(\Phi \cup (F(a), C(a)), G \cup F(a), K \cup \{\theta(a/\Phi)\}, \pi \cup \{a\})$)
 if $K \neq \emptyset$ then do
 select any $C \in K$
 threat-resolvers $\leftarrow \{\phi \in C \mid \phi \text{ consistent with } \Phi\}$
 if $threat-resolvers = \emptyset$ then return(failure)
 nondeterministically choose $\phi \in threat-resolvers$
 return($CP(\Phi \cup \phi, G, K - C, \pi)$)

end
Resolving Open Goals

- Let $\alpha \in G$ be an open goal
- Case 1: Φ supports α
 - Resolver: any enabler for α that’s consistent with Φ
 - Refinement:
 - $G \leftarrow G - \{\alpha\}$
 - $K \leftarrow K \cup \theta(\alpha/\Phi)$
- Case 2: Φ doesn’t support α
 - Resolver: an action $a = (F(a), C(a))$ that supports α
 - We don’t yet require a to be supported by Φ
 - Refinement:
 - $\pi \leftarrow \pi \cup \{a\}$
 - $\Phi \leftarrow \Phi \cup (F(a), C(a))$
 - $G \leftarrow G \cup F(a)$ Don’t remove α yet: we haven’t chosen an enabler for it
 - We’ll choose one in a later call to CP, in Case 1 above
 - $K \leftarrow K \cup \theta(a/\Phi)$ put a’s set of enablers into K
Resolving Threats

- **Threat**: each enabler in K that isn’t yet entailed by Φ is threatened
 - For each C in K, we need only one of the enablers in C
 - They’re alternative ways to achieve the same thing
 - “Threat” means something different here than in PSP, because we won’t try to entail all of the enablers
 - Just the one we select
 - Resolver: any enabler ϕ in C that is consistent with Φ
 - Refinement:
 - $K \leftarrow K - C$
 - $\Phi \leftarrow \Phi \cup \phi$
Example

- Let Φ_0 be as shown, and $\Phi_g = \Phi_0 \cup \{\{\alpha_1, \alpha_2\}, \emptyset\}$, where α_1 and α_2 are the same as before:
 - $\alpha_1 = rloc(r1)@t:(routes, loc3)$
 - $\alpha_2 = rloc(r1)@[t', t'']:loc3$

- As we saw earlier, we can support $\{\alpha_1, \alpha_2\}$ from Φ_0
 - Thus CP won’t add any actions
 - It will return a modified version of Φ_0 that includes the enablers for $\{\alpha_1, \alpha_2\}$
Modified Example

Let Φ_0 be as shown, and $\Phi_g = \Phi_0 \cup \{\alpha_1, \alpha_2\}$, where α_1 and α_2 are the same as before:

- $\alpha_1 = \text{rloc}(\text{r1})@t:(\text{routes, loc3})$
- $\alpha_2 = \text{rloc}(\text{r1})@[t',t'']:\text{loc3}$
- This time, CP will need to insert an action $\text{move}(t_s, t_e, t_1, t_2, r1, \text{loc4, loc3})$
 - with $t_5 < t_s < t_1 < t_2 < t_e$