CMSC 330: Organization of Programming Languages

Finite Automata 2

This Lecture
- Reducing NFA to DFA
 - ε-closure
 - Subset algorithm
- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA

Reducing NFA to DFA
- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states
- Example

Last Lecture
- Finite automata
 - Alphabet, states…
 - \([\Sigma, Q, q_0, F, \delta]\)
- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

How NFA Works
- When NFA processes a string
 - NFA may be in several possible states
 - Multiple transitions with same label
 - ε-transitions
- Example
 - After processing "a"
 - NFA may be in states
 - S1
 - S2
 - S3

Reducing RE to NFA
- Concatenation
- Union
- Closure

Reducing NFA to DFA (cont.)
- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - NFA \([\Sigma, Q, q_0, F, \delta]\)
 - Output
 - DFA \([\Sigma, R, r_0, F, \delta]\)
 - Using
 - ε-closure(p)
 - move(p, a)
ε-transitions and ε-closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions
 - If \(\exists p, p_1, p_2, \ldots, p_n, q \in Q \) such that
 \((p, \varepsilon, p_1) = \delta, (p_1, \varepsilon, p_2) = \delta, \ldots, (p_n, \varepsilon, q) = \delta \)

- \(\varepsilon \)-closure(\(p \))
 - Set of states reachable from \(p \) using \(\varepsilon \)-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \)
 - \(\varepsilon \)-closure(\(p \)) = \(\{ q \mid p \xrightarrow{\varepsilon} q \} \)
 - Note \(\varepsilon \)-closure(\(p \)) always includes \(p \)
 - \(\varepsilon \)-closure(\(p \)) may be applied to set of states (take union)

ε-closure: Example 1

- Following NFA contains
 - \(S_1 \), \(S_2 \)
 - \(S_2 \), \(S_3 \)
 - \(S_1 \), \(S_3 \)

- \(\varepsilon \)-closures
 - \(\varepsilon \)-closure(\(S_1 \)) = \(\{ S_1, S_2, S_3 \} \)
 - \(\varepsilon \)-closure(\(S_2 \)) = \(\{ S_2, S_3 \} \)
 - \(\varepsilon \)-closure(\(S_3 \)) = \(\{ S_3 \} \)
 - \(\varepsilon \)-closure(\(\{ S_1, S_2 \} \)) = \(\{ S_1, S_2, S_3 \} \cup \{ S_2, S_3 \} \)

ε-closure: Example 2

- Following NFA contains
 - \(S_1 \), \(S_3 \)
 - \(S_3 \), \(S_2 \)
 - \(S_1 \), \(S_2 \)

- \(\varepsilon \)-closures
 - \(\varepsilon \)-closure(\(S_1 \)) = \(\{ S_1, S_2, S_3 \} \)
 - \(\varepsilon \)-closure(\(S_2 \)) = \(\{ S_2 \} \)
 - \(\varepsilon \)-closure(\(S_3 \)) = \(\{ S_2, S_3 \} \)
 - \(\varepsilon \)-closure(\(\{ S_2, S_3 \} \)) = \(\{ S_2 \} \cup \{ S_2, S_3 \} \)

Calculating \(\text{move}(p,a) \)

- \(\text{move}(p,a) \)
 - Set of states reachable from \(p \) using exactly one transition on \(a \)
 - Set of states \(q \) such that \(p, a, q \) \(\in \delta \)
 - \(\text{move}(p,a) = \{ q \mid p, a, q \in \delta \} \)
 - Note \(\text{move}(p,a) \) may be empty \(\emptyset \)
 - If no transition from \(p \) with label \(a \)

ε-closure: Practice

- Find \(\varepsilon \)-closures for following NFA

- Find \(\varepsilon \)-closures for the NFA you construct for
 - The regular expression \((0|1*)111(0*|1) \)

move(\(a,p \)) : Example 1

- Following NFA
 - \(\Sigma = \{ a, b \} \)

- Move
 - \(\text{move}(S_1, a) = \{ S_2, S_3 \} \)
 - \(\text{move}(S_1, b) = \emptyset \)
 - \(\text{move}(S_2, a) = \emptyset \)
 - \(\text{move}(S_2, b) = \{ S_3 \} \)
 - \(\text{move}(S_3, a) = \emptyset \)
 - \(\text{move}(S_3, b) = \emptyset \)
move(a,p) : Example 2

- Following NFA
 - $\Sigma = \{a, b\}$

- Move
 - $\text{move}(S1, a) = \{S2\}$
 - $\text{move}(S1, b) = \{S3\}$
 - $\text{move}(S2, a) = \{S3\}$
 - $\text{move}(S2, b) = \emptyset$
 - $\text{move}(S3, a) = \emptyset$
 - $\text{move}(S3, b) = \emptyset$

NFA \rightarrow DFA Reduction Algorithm

- Input NFA $(\Sigma, Q, q_0, F_0, \delta)$, Output DFA $(\Sigma, R, r_0, F_d, \delta)$

- Algorithm
 - Let $r_0 = \epsilon$-closure(q_0), add it to R // DFA start state
 - While there is an unmarked state $r \in R$
 - Mark r // process DFA state r
 - For each $a \in \Sigma$
 - Let $S = \{s \mid s \in R \& \text{move}(q, a) = s\}$ // states reached via a
 - Let $e = \epsilon$-closure(S) // states reached via ϵ
 - If $e \in R$ // if state e is new
 - Let $R = e \cup R$ // add e to R (unmarked)
 - Let $\delta = \delta \cup \{r, a, e\}$ // add transition $r \rightarrow e$
 - Let $F_d = \{r \mid \exists s \in R \text{ with } s \in F_0\}$ // final if include state in F_0
 - For each a
 - Mark r
 - δ \cup s
 - $R = \epsilon$-closure($\{S_1, S_3\}, \{S_2\}$)
 - $\delta = \delta \cup \{\{S_2\}, \{S_3\}\}$
 - $\delta = \delta \cup \{\{S_2, b, \{S_3\}\}$

NFA \rightarrow DFA Example 1

- Start = ϵ-closure(S_1) = $\{S_1, S_3\}$
- $R = \{\{S_1, S_3\}\}$
- $r \in R = \{S_1, S_3\}$
- $\text{Move}((S_1, S_3), a) = \{S_2\}$
 - $e = \epsilon$-closure(S_2)
 - $R = R \cup \{S_2\} = \{S_1, S_3\}$
 - $\delta = \delta \cup \{S_1, S_3, a, \{S_2\}\}$
- $\text{Move}((S_1, S_3), b) = \emptyset$

NFA \rightarrow DFA Example 1 (cont.)

- $R = \{\{S_1, S_3\}, \{S_2\}\}$
- $r \in R = \{S_2\}$
- $\text{Move}((S_2), a) = \emptyset$
- $\text{Move}((S_2), b) = \{S_3\}$
 - $e = \epsilon$-closure(S_3)
 - $R = R \cup \{S_3\} = \{S_1, S_3\}$
 - $\delta = \delta \cup \{S_2, \{S_3\}\}$

NFA \rightarrow DFA Example 1 (cont.)

- $R = \{\{S_1, S_3\}, \{S_2\}, \{S_3\}\}$
- $r \in R = \{S_3\}$
- $\text{Move}((S_3), a) = \emptyset$
- $\text{Move}((S_3), b) = \emptyset$
- $F_d = \{\{S_1, S_3\}, \{S_3\}\}$
 - Since $S_3 \in F_n$
- Done!

NFA \rightarrow DFA Example 2

- NFA
- DFA

R = \{ [A], [B, D], [C, D] \}
NFA → DFA Example 3

- NFA
 - A, B, C, D, E
 - R = \{ {A,E}, {B,D,E} \}

- DFA
 - A, B, C, D
 - R = \{ {A,E}, {B,D,E} \}

Equivalence of DFAs and NFAs

- Any string from \{A\} to either \{D\} or \{CD\}
 - Represents a path from A to D in the original NFA

Equivalence of DFAs and NFAs (cont.)

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have \(2^n\) states
 - Since a set with n items may have \(2^n\) subsets
 - Corollary
 - Reducing a NFA with n states may be \(O(2^n)\)

Minimizing DFA

- Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape

Minimizing DFA: Hopcroft Reduction

- Intuition
 - Look for states that can be distinguish from each other
 - End up in different accept / non-accept state with identical input
- Algorithm
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states \(x, y\) belong in same partition if and only if for all symbols in \(\Sigma\) they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

- No need to split partition \{S,T,U,V\}
 - All transitions on \(a\) lead to identical partition \(P2\)
 - Even though transitions on \(a\) lead to different states

\[J. \text{ Hopcroft, "An n log n algorithm for minimizing states in a finite automaton," } 1971 \]
Splitting Partitions (cont.)

- Need to split partition \(\{S,T,U\}\) into \(\{S,T\}, \{U\}\)
 - Transitions on \(a\) from \(S,T\) lead to partition \(P2\)
 - Transition on \(a\) from \(R\) lead to partition \(P3\)

\[\text{DFA Minimization Algorithm (1)}\]

- **Input** DFA \((\Sigma, Q, q_0, F, \delta)\), Output DFA \((\Sigma, R, F_0, \delta)\)
- **Algorithm**
 - Let \(p_0 = F_0, p_1 = F\) // initial partitions = final, nonfinal states
 - Let \(R = \{ p \mid p \in (p_0,p_1) \text{ and } p \neq \emptyset \}, P = \emptyset \) // add p to R if nonempty
 - While \(P \neq R\) do // while partitions changed on prev iteration
 - Let \(P = R, R = \emptyset\) // P = prev partitions, R = current partitions
 - For each \(p \in P\) // for each partition from previous iteration
 - \(p_2 = p \) \(\text{split}(p, P)\) // split partition, if necessary
 - \(R = R \cup \{ p \mid p \in (p_0,p_1) \text{ and } p \neq \emptyset \}\) // add p to R if nonempty
 - \(r_0 = p \) \(\text{R where } q_0 \in p\) // partition w/ starting state
 - \(F_0 = \{ p \mid p \in \text{R and exists } s \in p \text{ such that } s \in F_0\}\) // parts w/ final states
 - \(\delta(p, c) = q\) when \(\delta(s, c) = r\) where \(s \in p\) and \(r \in q\) // add transitions

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \(\{S,T,U\}\)
 - After splitting partition \(\{X,Y\}\) into \(\{X\}, \{Y\}\)
 - Need to split partition \(\{S,T,U\}\) into \(\{S,T\}, \{U\}\)

\[\text{DFA Minimization Algorithm (2)}\]

- **Algorithm for \(\text{split}(p, P)\)**
 - Choose some \(r \in p\), let \(q = p - \{r\}, m = \{\}\) // pick some state \(r\) in \(p\)
 - For each \(s \in q\) // for each state in \(p\) except \(r\)
 - For each \(c \in \Sigma\) // for each symbol in alphabet
 - If \(\delta(r, c) = q_1\) and \(\delta(s, c) = q_2\) and \(q_1 \neq q_2\) then
 - \(m = m \cup \{s\}\) // add \(s\) to \(m\) if \(q_1\)’s not in same partition
 - Return \(p = m, m\) // \(m\) = states that behave differently than \(r\)
 - \(m\) may be \(\emptyset\) if all states behave the same
 - \(p = m\) = states that behave the same as \(r\)

Minimizing DFA: Example 1

- **DFA**
 - Initial partitions
 - Accept \{R\} \(\rightarrow\) P1
 - Reject \{S, T\} \(\rightarrow\) P2
 - Split partition? \(\rightarrow\) Not required, minimization done
 - \(\text{move}(S, a) = T \rightarrow P2\)
 - \(\text{move}(T, a) = T \rightarrow P2\)
 - \(\text{move}(S, b) = R \rightarrow P1\)
 - \(\text{move}(T, b) = R \rightarrow P1\)

Minimizing DFA: Example 2

- **DFA**
 - Initial partitions
 - Accept \{R\} \(\rightarrow\) P1
 - Reject \{S, T\} \(\rightarrow\) P2
 - Split partition? \(\rightarrow\) Not required, minimization done
 - \(\text{move}(S, a) = T \rightarrow P2\)
 - \(\text{move}(T, a) = T \rightarrow P2\)
 - \(\text{move}(S, b) = R \rightarrow P1\)
 - \(\text{move}(T, b) = R \rightarrow P1\)
Minimizing DFA: Example 3

- DFA

 ![DFA Diagram]

- Initial partitions
 - Accept \{ R \} \rightarrow P1
 - Reject \{ S, T \} \rightarrow P2

- Split partition? \rightarrow Yes, different partitions for B
 - move(S, a) = T \rightarrow P2
 - move(S, b) = T \rightarrow P2
 - move(T, a) = T \rightarrow P2
 - move(T, b) = R \rightarrow P1

Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - \(\Sigma = \{ a, b \} \)

 ![Complement DFA Diagram]

Complement of DFA (cont.)

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

- Note this only works with DFAs
 - Why not with NFAs?

Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.

![Practice DFA Diagram]

Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA

Relating REs to DFAs and NFAs

- Why do we want to convert between these?
 - Can make it easier to express ideas
 - Can be easier to implement
Implementing DFAs

It's easy to build a program which mimics a DFA.

```c
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
                     case '1': cur_state = 1; break;
                    case '0': cur_state = 0; break;
                    default: printf("rejected\n"); return 0;
        }
        case 1: switch (symbol) {
                     case '1': printf("accepted\n"); return 1;
                    case '0': printf("rejected\n"); return 0;
                    default: printf("rejected\n"); return 0;
        }
        default: printf("unknown state; I'm confused\n"); break;
    }
}
```

Run Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is $O(|s|)$
 -> Can't get much faster!
- Constructing DFA for RE A may take $O(2^{|A|})$ time
 - But usually not the case in practice
- So there's the initial overhead
 - But then processing strings is fast

Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA.

```c
given components ($\Sigma, Q, q_0, F, \delta$) of a DFA:
let $q = q_0$
while (there exists another symbol $s$ of the input string)
    $q \rightarrow \delta(q, s)$;
if $q \in F$ then
    accept
else reject

- $q$ is just an integer
- Represent $\delta$ using arrays or hash tables
- Represent $F$ as a set
```

Regular Expressions in Practice

- Regular expressions are typically "compiled" into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_0, q_0, \delta_0, \delta)$, the components of the DFA produced from the RE
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
- Disadvantages
 -> Nonstandard, plus can have higher complexity

Practice

- Convert to a DFA
- Convert to an NFA and then to a DFA
 - $(0|1)^*11|0^*$
 - Strings of alternating 0 and 1
 - aba" [(ba|b]

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE \rightarrow NFA
 -> Concatenation, union, closure
 - NFA \rightarrow DFA
 -> ϵ-closure & subset algorithm
- DFA
 - Minimization, complement
 - Implementation