Lambda Calculus

- Proposed in 1930s by
 - Alonzo Church
 - Stephen Cole Kleene

- Formal system
 - Designed to investigate functions & recursion
 - For exploration of foundations of mathematics

- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell...

Lambda Calculus (λ-calculus)

A lambda calculus expression is defined as

\[e ::= x \quad |\quad \lambda x.e \quad |\quad ee \]

- variable
- function
- function application

\[\lambda x.e \] is like \((\text{fun} \ x \rightarrow e)\) in OCaml

That’s it! Nothing but higher-order functions

Programming Language Features

- Many features exist simply for convenience
 - Multi-argument functions
 - Use currying or tuples
 - Loops
 - Use recursion
 - Side effects
 - Use functional programming

- So what language features are really needed?

Turing Completeness

- Computational system that can
 - Simulate a Turing machine
 - Compute every Turing-computable function

- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language

- Most powerful programming language possible
 - Since Turing machine is most powerful automaton

Programming Language Theory

- Come up with a “core” language
 - That’s as small as possible
 - But still Turing complete

- Helps illustrate important
 - Language features
 - Algorithms

- One solution
 - Lambda calculus

Lambda Expressions

- A lambda calculus expression is defined as

\[e ::= x \quad |\quad \lambda x.e \quad |\quad ee \]

- variable
- function
- function application

\[\lambda x.e \] is like \((\text{fun} \ x \rightarrow e)\) in OCaml

That’s it! Nothing but higher-order functions
Three Conveniences

- Syntactic sugar for local declarations
 - let x = e1 in e2 is short for (\x.e2) e1

- Scope of \(\lambda \) extends as far right as possible
 - Subject to scope delimited by parentheses
 - \(\lambda x. \lambda y. x \ y \) is same as \(\lambda x. (\lambda y. (x \ y)) \)

- Function application is left-associative
 - \(x \ y \ z \) is \((x \ y) \ z \)
 - Same rule as OCaml

Lambda Calculus Semantics

- All we’ve got are functions
 - So all we can do is call them

- To evaluate (\x.e1) e2
 - Evaluate e1 with x bound to e2

- This application is called beta-reduction
 - (\x.e1) e2 \(\rightarrow \) e1[x/e2]
 - e1[x/e2] is e1 where occurrences of x are replaced by e2
 - Slightly different than the environments we saw for OCaml
 - Do substitutions to replace formals with actuels
 - Instead of using environment to map formals to actuels
 - We allow reductions to occur anywhere in a term

Beta Reduction Example

\[
(\lambda x. (\lambda z. x) \ y) \\
\rightarrow (\lambda x. (\lambda z. (x) \ y)) \ y \quad \text{// since \(\lambda \) extends to right} \\
\rightarrow (\lambda x. (\lambda z. (x) \ y)) \ y \quad \text{// apply (\lambda x.e1) e2 \(\rightarrow \) e1[x/e2]} \\
\rightarrow \lambda z.(y \ z) \quad \text{// final result} \\
\]

- Equivalent OCaml code
 - (fun x -> (fun z -> (x y) z)) y \(\rightarrow \) fun z -> (y z)

Lambda Calculus Examples

- (\lambda x. x) z \(\rightarrow \) z
- (\lambda x. x) y \(\rightarrow \) y

- (\lambda x. \lambda y. x) z \(\rightarrow \) \lambda y. z y
 - A function that applies its argument to y

Lambda Calculus Examples (cont.)

- (\lambda x. x) (\lambda z. z) \(\rightarrow \) (\lambda z. z) y \(\rightarrow \) y
- (\lambda x. \lambda y. x) y z \(\rightarrow \) \lambda y. z y
 - A curried function of two arguments
 - Applies its first argument to its second

- (\lambda x. \lambda y. x) (\lambda z. z) x \(\rightarrow \) (\lambda y. (\lambda z. z) y) x \(\rightarrow \) (\lambda z. z) x \(\rightarrow \) xx

Static Scoping & Alpha Conversion

- Lambda calculus uses static scoping

- Consider the following
 - (\lambda x. (\lambda x. x)) z \(\rightarrow \) ?
 - The rightmost “x” refers to the second binding
 - This is a function that
 - Takes its argument and applies it to the identity function

- This function is “the same” as (\lambda x. (\lambda y. y))
 - Renaming bound variables consistently is allowed
 - This is called alpha-renaming or alpha conversion
 - Ex. \(\lambda x. x = \lambda y. y \rightarrow \lambda z. z \) \(\lambda y. \lambda x. x \) \(\lambda z. \lambda x. z \)
Static Scoping (cont.)

- How about the following?
 - \((\lambda x. \lambda y. x) y\) \(\rightarrow\) ?
 - When we replace \(y\) inside, we don’t want it to be captured by the inner binding of \(y\)
 - I.e., \((\lambda x. \lambda y. x) y = \lambda y. y\)

- Solution
 - \((\lambda x. \lambda y. x) y\) is “the same” as \((\lambda x. \lambda z. x)z\)
 - Due to alpha conversion
 - So change \((\lambda x. \lambda y. x) y\) to \((\lambda x. \lambda z. x) z\) \(y\) first
 - Now \((\lambda x. \lambda z. x) z\) \(y\) \(\rightarrow\) \(\lambda z. y\) \(z\)

Encodings

- The lambda calculus is Turing complete

- Means we can encode any computation we want
 - If we’re sufficiently clever...

Examples

- Booleans
- Pairs
- Natural numbers & arithmetic
- Looping

Booleans (cont.)

- Other Boolean operations
 - \(\text{not} = \lambda x. ((x \text{ false}) \text{ true})\)
 - \(\text{not} \rightarrow (\lambda x. ((x \text{ false}) \text{ true}) \rightarrow (\text{true false}) \rightarrow \text{false}\)
 - \(\text{and} = \lambda x. \lambda y. ((xy) \text{ false})\)
 - \(\text{or} = \lambda x. \lambda y. ((x \text{ true}) y)\)

- Given these operations
 - Can build up a logical inference system

Beta-Reduction, Again

- Whenever we do a step of beta reduction
 - \((\lambda x. e_1) e_2 \rightarrow e_1[x/e_2]\)
 - We must first alpha-convert variables as necessary
 - Usually performed implicitly (w/o showing conversion)

- Examples
 - \((\lambda x. \lambda y. x) y = (\lambda x. \lambda z. x) z \rightarrow \lambda z. y z\) \(\parallel y \rightarrow z\)
 - \((\lambda x. (\lambda x. x)) z = (\lambda y. (\lambda x. x)) z \rightarrow z (\lambda x. x)\) \(\parallel x \rightarrow y\)
 - \((\lambda x. (\lambda x. x)) z = (\lambda x. (\lambda y. y)) z \rightarrow z (\lambda y. y)\) \(\parallel x \rightarrow y\)

Booleans

- Church’s encoding of mathematical logic
 - \(\text{true} = \lambda x. \lambda y. x\)
 - \(\text{false} = \lambda x. \lambda y. y\)
 - if \(a\) then \(b\) else \(c\)
 - Defined to be the \(\lambda\) expression: \(a\) \(b\) \(c\)

- Examples
 - if true then \(b\) else \(c\) \(\rightarrow\) \((\lambda x. \lambda y. x) b c \rightarrow (\lambda y. b) c \rightarrow b\)
 - if false then \(b\) else \(c\) \(\rightarrow\) \((\lambda x. \lambda y. y) b c \rightarrow (\lambda y. y) c \rightarrow c\)

Pairs

- Encoding of a pair \(a, b\)
 - \((a, b) = \lambda x. \text{if } x \text{ then } a \text{ else } b\)
 - fst = \(\lambda f. f\) true
 - snd = \(\lambda f. f\) false

- Examples
 - fst \((a, b) = (\lambda f. f\) true\) \((\lambda x. \text{if } x \text{ then } a \text{ else } b) \rightarrow (\lambda x. \text{if } x \text{ then } a \text{ else } b) \text{ true} \rightarrow a\)
 - snd \((a, b) = (\lambda f. f\) false\) \((\lambda x. \text{if } x \text{ then } a \text{ else } b) \rightarrow (\lambda x. \text{if } x \text{ then } a \text{ else } b) \text{ false} \rightarrow b\)
Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
 - $0 = \lambda x. y$
 - $1 = \lambda x. y . f$
 - $2 = \lambda x. y . f (f y)$
 - $3 = \lambda x. y . f (f (f y))$
 - i.e., $n = \lambda x. y . \text{apply } f \text{ } n \text{ } \text{times to } y$

* (Alonzo Church, of course)

Operations On Church Numerals

- Successor
 - $\text{succ} = \lambda z. \lambda x. y . (z f y)$
 - $0 = \lambda x. y$
 - $1 = \lambda x. y . f$

- Example
 - $\text{succ} 0 =$
 - $(\lambda z. \lambda x. y . (z f y)) (\lambda x. y . y) \rightarrow$
 - $\lambda x. y . ((\lambda x. y . y) y) \rightarrow$
 - $\lambda x. y . \text{true} \rightarrow$ Since $(\lambda x. y . z \rightarrow y) \text{true}$

Operations On Church Numerals (cont.)

- IsZero?
 - $\text{iszero} = \lambda z. (\lambda y. \text{false}) \text{true}$
 - This is equivalent to $\lambda z. ((z (\lambda y. \text{false})) \text{true})$

- Example
 - $\text{iszero } 0 =$
 - $(\lambda z. (\lambda y. \text{false}) \text{true}) (\lambda x. y . y) \rightarrow$
 - $(\lambda x. y . y) \rightarrow$
 - $(\lambda y. \text{true} \rightarrow$ Since $(\lambda x. y . z \rightarrow y) \text{true}$

Arithmetic Using Church Numerals

- If M and N are numbers (as λ expressions)
 - Can also encode various arithmetic operations

- Addition
 - $M + N = \lambda x. y . (M x)((N x) y)$
 - Equivalently: $+ = \lambda M. \lambda N. \lambda x. y . (M x)((N x) y)$
 - In prefix notation ($+ M N$)

- Multiplication
 - $M \times N = \lambda x . (M (N x))$
 - Equivalently: $\times = \lambda M . \lambda N . \lambda x . (M (N x))$
 - In prefix notation ($\times M N$)

Arithmetic (cont.)

- Prove $1+1 = 2$
 - $1 = \lambda x. y . f$
 - $1+1 = \lambda x. y . (f y) (f y)$

- With these definitions
 - Can build a theory of arithmetic

Looping

- Define $D = \lambda x. x . x$, then
 - $D D = (\lambda x . x) (\lambda x . x) \rightarrow (\lambda x . x) (\lambda x . x) = D D$

- So $D D$ is an infinite loop
 - In general, self application is how we get looping
The “Paradoxical” Combinator

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

- Then
 \[YF = \]
 \[(\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) F \rightarrow \]
 \[(\lambda x. F (x x)) (\lambda x. F (x x)) \rightarrow \]
 \[F ((\lambda x. F (x x)) (\lambda x. F (x x))) \]
 \[= F (YF) \]

- Thus \(YF = F (YF) = F (F (YF)) = \ldots \)
 - We can use \(Y \) to achieve recursion for \(F \)

Example

\[\text{fact} = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f \ (n-1)) \]
- The second argument to \(\text{fact} \) is the integer
- The first argument is the function to call in the body
 - We’ll use \(Y \) to make this recursively call \(\text{fact} \)

\[(Y \text{fact}) \ 1 \]
- \(\rightarrow 1 \) if \(1 = 0 \) then \(1 \) else \(1 \times ((Y \text{fact}) \ 0) \)
- \(\rightarrow 1 \times ((Y \text{fact}) \ 0) \)
- \(\rightarrow 1 \times ((Y \text{fact}) \ (-1)) \)
- \(\rightarrow 1 \times 1 \rightarrow 1 \)

Discussion

- Lambda calculus is Turing-complete
 - Most powerful language possible
 - Can represent pretty much anything in “real” language
 - Using clever encodings
- But programs would be
 - Pretty slow (10000 + 1 \rightarrow \text{thousands of function calls})
 - Pretty large (10000 + 1 \rightarrow \text{hundreds of lines of code})
 - Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
 - We use richer, more expressive languages
 - That include built-in primitives

Simply-Typed Lambda Calculus

- \(e ::= n \mid x \mid \lambda x. e \mid e \ e \)
 - Added integers \(n \) as primitives
 - Need at least two distinct types \(\text{(integer}_i \text{ & function)} \ldots \)
 - \(\ldots \) to have type errors
 - Functions now include the type of their argument

Simply-Typed Lambda Calculus (cont.)

- \(t ::= \text{int} \mid t
ightarrow t \)
 - \(\text{int} \) is the type of integers
 - \(t \rightarrow t_2 \) is the type of a function
 - That takes arguments of type \(t_1 \) and returns result of type \(t_2 \)
 - \(t_1 \) is the domain and \(t_2 \) is the range
 - Notice this is a recursive definition
 - So we can give types to higher-order functions
- Will show how to compute types later
 - Example of operational semantics
Summary

- Lambda calculus shows issues with
 - Scoping
 - Higher-order functions
 - Types

- Useful for understanding how languages work