Course objectives: Study interesting algorithms and methods for the analysis of biological data. We will cover string matching algorithms, string searching, string pattern finding (e.g., gene finding, discovery of protein binding sites), genome assembly, phylogenetics, protein structure prediction, and several topics of current research interest in bioinformatics.

Professor: Carl Kingsford, Office: CBCB 3113. Email: carlkcs.umd.edu. Office hours: Mondays 2:30-3:30. If you cannot attend office hours at this time, email me about scheduling a different time.

Class time: Tue/Thr 9:30am-10:45pm in CSIC 2107.

Textbook: An Introduction to Bioinformatics Algorithms by Neil C. Jones and Pavel A. Pevzner. The MIT Press, 2004. ISBN: 0-262-10106-8. Unfortunately, because bioinformatics is a broad, new, and rapidly changing field, there is no great textbook. The material in the textbook will be supplemented by lecture slides and handouts.

Course work: There will be ~ 5 homework sets of 3–5 problems each. There will be 2 in-class exams, each non-cumulative, and a comprehensive final. There will be a multi-part group project. Approximate grading weight: 10% for homeworks, 20% for each exam, 30% for the final, and 20% for the project. The class will be graded on a curve.

Homework policies:

- Written problem sets are due at the start of class. **No late homework will be accepted** — turn in what you have completed. If you will miss class, turn in the homework early.

- Answers to homework problems should be written concisely and clearly. **Messy or poorly written homeworks will not be graded.** Typesetting homeworks with LaTeX is encouraged (but not required).

- Homework problems that ask for an algorithm should present: a clear English description or pseudocode of the algorithm, a convincing argument for why the algorithm is correct, and an estimate of the running time.

- Graded homeworks should be picked up in class; if you miss the class when the homework is returned, please pick it up during office hours.

- Regrade requests should be made in writing within 1 week of the homework being returned.

- You may discuss the problems with classmates. **You must list the names of the class members with whom you worked at the top of your homework. You must write up your own solution independently!**

Exam policies: Exams and the final will be closed book, closed note. The midterms will be held in-class on **September 30, 2010** and **November 11, 2010**. The final exam will be in-class at the time set by the official university exam schedule.

Project policies: Projects will be completed in small groups and will involve programming. **You may NOT copy or give code to other groups.** Providing code and using code from other groups are both academic integrity violations that generally receive the same punishment. **You cannot incorporate code from the internet into your projects.** Submitted projects may be checked automatically for inappropriate code use. More details about the projects will be available in a few weeks.
The maximum possible score of a project will be reduced by 10% for every day it is late. After 5 late days, the project will no longer be accepted.

Excused absences: Students claiming an excused absence must apply in writing and furnish documentary support (such as from a health care professional who treated the student) for any assertion that the absence qualifies as an excused absence. The support should explicitly indicate the dates or times the student was incapacitated due to illness. Self-documentation of illness is not sufficient to excuse the absence. Absences for religious observances must be submitted in writing to the instructor within two weeks of the start of the semester. The instructor is not under obligation to offer a substitute assignment or to give a student a make-up assessment unless the failure to perform was due to an excused absence. An excused absence for an individual typically does not translate into an extension for team deliverables on a project.

Academic accommodations: Any student eligible for and requesting reasonable academic accommodations due to a disability is requested to provide, to the instructor in office hours, a letter of accommodation from the Office of Disability Support Services (DSS) within the first two weeks of the semester.

Course evaluations: At the end of the semester, please fill out a course evaluation at http://www.courseevalum.umd.edu. Course evaluations are read and taken seriously.

Academic honesty: All class work should be done independently unless explicitly indicated on the assignment handout. You may discuss homework problems with classmates, but must write your solution by yourself. If you do discuss assignments with other classmates, you must supply their names at the top of your homework. Projects may be completed in teams as specified on the project handout.

No excuses will be accepted for copying others work (from the current or past semesters), and violations will be dealt with harshly. Every year, many CS students are referred to the honor board, which is an unpleasant experience for everyone and can seriously impact plans for graduate school, graduation, etc. Getting a bad grade is much preferable to cheating.

To quote the honor council: “The University of Maryland, College Park has a nationally recognized Code of Academic Integrity, administered by the Student Honor Council. This Code sets standards for academic integrity at Maryland for all undergraduate and graduate students. As a student you are responsible for upholding these standards for this course. It is very important for you to be aware of the consequences of cheating, fabrication, facilitation, and plagiarism. For more information on the Code of Academic Integrity or the Student Honor Council, please visit http://www.shc.umd.edu.

To further exhibit your commitment to academic integrity, remember to sign the Honor Pledge on all examinations and assignments: ‘I pledge on my honor that I have not given or received any unauthorized assistance on this examination (assignment).'”
Tentative Schedule

Sequence Comparison & Dynamic Programming (3 weeks)
- Dynamic programming
- Longest common subsequence
- Sequence alignment (local, global, semiglobal)
- Space efficient sequence alignment
- Multiple sequence alignment
- RNA folding

Sequence Search & String Data Structures (1.5 weeks)
- Suffix trees
- Suffix arrays
- Burrows-Wheeler transform

Pattern Finding with Hidden Markov Models & EM/Gibbs Sampling (2 weeks)
- Hidden Markov models
- HMMs for gene finding
- HMMs for motif-finding
- EM/Gibbs sampling for motif finding

Gene Expression & Clustering (1.5 weeks)
- Gene expression matrices
- K-means clustering
- Gene association studies, genotyping, SNPs

Phylogenetics (2 weeks)
- Building evolutionary trees
- Neighbor-joining / UPGMA
- Fitch’s algorithm
- Maximum likelihood / parsimonious trees
- Genome rearrangements

Protein Structure (1.5 weeks)
- Protein structure prediction
- Secondary structure prediction
- Side-chain positioning
- Threading

Current Research Topics (1.5 weeks)
- The shape of the genome
- Mouse and fly brain structure
- ...