Space-Efficient Alignment

CMSC 423
Space Usage

• $O(n^2)$ is pretty low space usage, but for a 10 Gb genome, you’d need a huge amount of memory.

• Can we use less?

 • Hirschberg’s algorithm
Remember the meaning of a cell

Best alignment between prefix x[1..5] and prefix y[1..5]
Linear Space for Alignment *Scores*

- If you are only interested in the *cost* or *score* of an alignment, you need to use only $O(n)$ space.
- How?
Linear Space for Alignment **Scores**

- If you are only interested in the **cost** or **score** of an alignment, you need to use only $O(n)$ space.
- How?

When filling in an entry (gray box) we only look at the current and previous rows.

Only need to keep those two rows in memory.
We can do more...

• Given 2 strings X and Y, we can, in linear space and $O(nm)$ time, compute the **cost** of aligning...

 • every prefix of X with Y

 • X with every prefix of Y

 • a particular prefix of X with every prefix of Y

 • a particular suffix of X with every suffix of Y

• How can we do that?
Best Alignment Between Prefix of X and Y

Score of an optimal alignment between Y and a prefix of X
Fill in the matrix by columns...

What is this column?
Fill in the matrix by columns...

What is this column?

Best scores between X and all prefixes of Y
Fill in the matrix by columns...

Best scores between a prefix of X and all prefixes of Y

What is this column?

Best scores between X and all prefixes of Y
Cost of Alignment Between X and All Suffixes of Y

Best alignment between suffix x[10..] and suffix y[6..]

\[B[i, j] = \min \left\{ \begin{array}{l}
\text{cost}(x_i, y_j) + B[i + 1, j + 1] \\
gap + B[i, j + 1] \\
gap + B[i + 1, j]
\end{array} \right\} \]
Cost of Alignment Between X and All Suffixes of Y

Exactly the same reasoning as doing the “forward” dynamic programming.

$$B[i, j] = \min \begin{cases}
\text{cost}(x_i, y_j) + B[i + 1, j + 1] \\
gap + B[i, j + 1] \\
gap + B[i + 1, j]
\end{cases}$$
Cost of Alignment Between X and All Suffixes of Y

“Backward” dynamic programming.

Exactly the same reasoning as doing the “forward” dynamic programming.

\[
B[i, j] = \min \left\{ \begin{array}{l}
\text{cost}(x_i, y_j) + B[i + 1, j + 1] \\
\text{gap} + B[i, j + 1] \\
\text{gap} + B[i + 1, j]
\end{array} \right.
\]

Best alignment between suffix x[10..] and suffix y[6..]
Can We Find the Alignment in \(\mathcal{O}(n)\) Space?

• Surprisingly, yes, we can output the optimal alignment in linear space.

• This will cost us some extra computation but only a constant factor

• for such a dramatic reduction in space, it’s often worth it.

• **Idea**: a divide-and-conquer algorithm to compute half alignments.
Divide & Conquer

• General algorithmic design technique:
 • Split large problem into a few subproblems.
 • Recursively solve each subproblem.
 • Merge the resulting answers.

• You probably know such algorithms:
 • Merge sort
 • Quick sort
The Best Path Uses Some Cell in the Middle Column

bestq = 5
Notation

- **AlignValue**\((x, y)\) = compute the cost of the best alignment between \(x\) and \(y\) in \(O(|x|, |y|)\) space.

- Finding the actual alignment is equivalent to finding all the cells that the **optimal backtrace** passes through.

- Call the optimal backtrace the **ArrowPath**.
First Attempt At Space Efficient Alignment

In the optimal alignment, the first \(n/2 \) characters of \(x \) are aligned with the first \(q \) characters of \(y \) for some \(q \).

\[
\begin{align*}
12345678 \\
x & = \text{ACGTACTG} \\
y & = \underline{A} \text{GT-CTG} \\
q & = 3
\end{align*}
\]

We don’t know \(q \), so we have to try all possible \(q \).

\[
\text{ArrowPath} := [] \\
\text{def } \text{Align}(x, y): \\
\quad n := |x|; m := |y| \\
\quad \text{if } n \text{ or } m \leq 2: \text{ use standard alignment} \\
\quad \text{for } q := 0..m: \\
\quad \quad v1 := \text{AlignValue}(x[1..n/2], y[1..q]) \\
\quad \quad v2 := \text{AlignValue}(x[n/2+1..n], y[q+1..m]) \\
\quad \quad \text{if } v1 + v2 < \text{best}: \text{ bestq } = q; \text{ best } = v1 + v2
\]

Add \((n/2, \text{bestq})\) to \(\text{ArrowPath}\) \\
\text{Align}(x[1..n/2], y[1..\text{bestq}]) \\
\text{Align}(x[n/2+1..n], y[\text{bestq}+1..m])

\(\bigO(n)\) or \(\bigO(m)\) space \\
\(\bigO(n+m)\) space \\
\(\bigO(n+m)\) space \\
find the \(q \) that minimizes the cost of the alignment
Problem

- This works in linear space.

- BUT: not in $O(nm)$ time.

- It’s too expensive to solve all those AlignValue problems in the `for` loop.

- Define:
 - $\text{AllYPrefixCosts}(x, i, y) =$ returns an array of the scores of optimal alignments between $x[1..i]$ and all prefixes of Y.
 - $\text{AllYSuffixCosts}(x, i, y) =$ returns an array of the scores of optimal alignments between $x[i..n]$ and all suffixes of y.
 - These are implemented as described in previous slides.
We still try all possible q, but we use the fact that we can compute the cost between a given prefix and all suffixes in linear space.

```
ArrowPath := []

def Align(x, y):
    n := |x|; m := |y|
    if n or m ≤ 2: use standard alignment
    YPrefix := AllYPrefixCosts(x, n/2, y)
    YSuffix := AllYSuffixCosts(x, n/2+1, y)
    for q := 0..m:
        cost = YPrefix[q] + YSuffix[q+1]
        if cost < best: bestq = q; best = cost
    Add (n/2, bestq) to ArrowPath
    Align(x[1..n/2], y[1..bestq])
    Align(x[n/2+1..n], y[bestq+1..m])
```

find the q that minimizes the cost of the alignment, using the costs of aligning X to prefixes and suffixes of Y
Running Time Recurrence, I

Full recurrence:

\[
T(n, 2) \leq cn \\
T(2, m) \leq cm \\
T(n, m) \leq cmn + T(n/2, q) + T(n/2, m - q)
\]

\[
\text{Align}(x[1..n/2], y[1..bestq]) \\
\text{Align}(x[n/2+1..n], y[bestq+1..m])
\]

Too complicated because we don’t know what q is.

Simplify: assume both sequences have length n, and that we get a perfect split in half every time, q=n/2:

\[
T(n) \leq 2T(n/2) + cn^2
\]

Solves as:

\[
T(n) = O(n^2)
\]
Running Time Recurrence, 2

\[T(n, 2) \leq cn \]
\[T(2, m) \leq cm \]
\[T(n, m) \leq cmn + T(n/2, q) + T(n/2, m - q) \]

Guess: \(T(n,m) \leq kmn \), for some \(k \).

Proof, by induction:

Base cases: If \(k \geq c \) then \(T(n,2) \leq cn \leq c2n \leq k2n = kmn \)

Induction step: Assume \(T(m', n') \leq km'n' \) for pairs \((m',n')\) with a product smaller than \(mn \):

\[
T(m, n) \leq cmn + T(n/2, q) + T(n/2, m - q)
\leq cmn + kqn/2 + k(m - q)n/2 \quad \leftarrow \text{apply induction hypothesis}
= cmn + kqn/2 + kmn/2 - kqn/2
= (c + k/2)mn
\]

\(k = 2c \implies T(m, n) \leq 2cmn = kmn \)

\[\square \]
Recap

- Can compute the cost of an alignment easily in linear space.

- Can compute the cost of a string with all suffixes of a second string in linear space.

- Divide and conquer algorithm for computing the actual alignment (traceback path in the DP matrix) in linear space.

- Still uses $O(nm)$ time!