Data Flow Analysis

Compiler Structure

- Source code parsed to produce AST
- AST transformed to CFG
- Data flow analysis operates on control flow graph (and other intermediate representations)

Abstract Syntax Tree (AST)

- Programs are written in text
 - i.e., sequences of characters
 - Awkward to work with
- First step: Convert to structured representation
 - Use lexer (like flex) to recognize tokens
 - Sequences of characters that make words in the language
 - Use parser (like bison) to group words structurally
 - And, often, to produce AST

Abstract Syntax Tree Example

```
x := a + b;
y := a * b;
while (y > a) {
  a := a + 1;
  x := a + b
}
```
ASTs

- ASTs are *abstract*
 - They don’t contain all information in the program
 - E.g., spacing, comments, brackets, parentheses
 - Any ambiguity has been resolved
 - E.g., \(a + b + c \) produces the same AST as \((a + b) + c \)

- For more info, see CMSC 430
 - In this class, we will generally begin at the AST level

Disadvantages of ASTs

- AST has many similar forms
 - E.g., for, while, repeat...until
 - E.g., if, ?:, switch
- Expressions in AST may be complex, nested
 - \((42 \times y) + (z > 5 \ ? 12 \times z : z + 20)\)
- Want simpler representation for analysis
 - ...at least, for dataflow analysis

Control-Flow Graph (CFG)

- A directed graph where
 - Each node represents a statement
 - Edges represent control flow
- Statements may be
 - Assignments \(x := y \text{ op } z \) or \(x := \text{ op } z \)
 - Copy statements \(x := y \)
 - Branches goto \(L \) or if \(x \text{ relop } y \) goto \(L \)
 - etc.

Control-Flow Graph Example

```plaintext
x := a + b;
y := a \times b;
while (y > a) {
  a := a + 1;
x := a + b
}
```
Variations on CFGs

- We usually don’t include declarations (e.g., int x;)
 - But there’s usually something in the implementation

- May want a unique entry and exit node
 - Won’t matter for the examples we give

- May group statements into basic blocks
 - A sequence of instructions with no branches into or out of the block

Control-Flow Graph w/Basic Blocks

- Can lead to more efficient implementations
- But more complicated to explain, so...
 - We’ll use single-statement blocks in lecture today

Graph Example with Entry and Exit

x := a + b;
y := a * b;
while (y > a) {
 a := a + 1;
x := a + b
}

- All nodes without a (normal) predecessor should be pointed to by entry
- All nodes without a successor should point to exit

CFG vs. AST

- CFGs are much simpler than ASTs
 - Fewer forms, less redundancy, only simple expressions

- But...AST is a more faithful representation
 - CFGs introduce temporaries
 - Lose block structure of program

- So for AST,
 - Easier to report error + other messages
 - Easier to explain to programmer
 - Easier to unparse to produce readable code
Data Flow Analysis

• A framework for proving facts about programs
• Reasons about lots of little facts
• Little or no interaction between facts
 ▪ Works best on properties about how program computes
• Based on all paths through program
 ▪ Including infeasible paths

Available Expressions

• An expression e is available at program point p if
 ▪ e is computed on every path to p, and
 ▪ the value of e has not changed since the last time e was computed on the paths to p

• Optimization
 ▪ If an expression is available, need not be recomputed
 - (At least, if it’s still in a register somewhere)

Data Flow Facts

• Is expression e available?
• Facts:
 ▪ $a + b$ is available
 ▪ $a * b$ is available
 ▪ $a + 1$ is available

Gen and Kill

• What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x := a + b$</td>
<td>$a + b$</td>
<td></td>
</tr>
<tr>
<td>$y := a * b$</td>
<td>$a * b$</td>
<td></td>
</tr>
<tr>
<td>$y > a$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a := a + 1$</td>
<td>$a + 1$, $a + b$, $a * b$</td>
<td></td>
</tr>
<tr>
<td>$x := a + b$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing Available Expressions

Terminology

- A joint point is a program point where two branches meet.

- Available expressions is a forward must problem:
 - Forward = Data flow from in to out
 - Must = At join point, property must hold on all paths that are joined

Data Flow Equations

- Let \(s \) be a statement
 - \(\text{succ}(s) = \{ \text{immediate successor statements of } s \} \)
 - \(\text{pred}(s) = \{ \text{immediate predecessor statements of } s \} \)
 - \(\text{In}(s) = \text{program point just before executing } s \)
 - \(\text{Out}(s) = \text{program point just after executing } s \)

 \(\text{In}(s) = \bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \)

 \(\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s)) \)

Liveness Analysis

- A variable \(v \) is live at program point \(p \) if
 - \(v \) will be used on some execution path originating from \(p \)
 - before \(v \) is overwritten

- Optimization
 - If a variable is not live, no need to keep it in a register
 - If variable is dead at assignment, can eliminate assignment
Data Flow Equations

- Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges
 - Expr is available only if available on all paths

- Liveness is a backward may problem
 - To know if variable live, need to look at future uses
 - Variable is live if used on some path

- \(\text{Out}(s) = \bigcup_{s' \in \text{succ}(s)} \text{In}(s') \)

- \(\text{In}(s) = \text{Gen}(s) \cup (\text{Out}(s) - \text{Kill}(s)) \)

Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x := a + b)</td>
<td>(a, b)</td>
<td>(x)</td>
</tr>
<tr>
<td>(y := a \times b)</td>
<td>(a, b)</td>
<td>(y)</td>
</tr>
<tr>
<td>(y > a)</td>
<td>(a, y)</td>
<td></td>
</tr>
<tr>
<td>(a := a + 1)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

Computing Live Variables

Very Busy Expressions

- An expression \(e \) is very busy at point \(p \) if
 - On every path from \(p \), expression \(e \) is evaluated before the value of \(e \) is changed

- Optimization
 - Can hoist very busy expression computation

- What kind of problem?
 - Forward or backward? backward
 - May or must? must
Reaching Definitions

- A **definition** of a variable v is an assignment to v

- A definition of variable v reaches point p if
 - There is no intervening assignment to v

- Also called def-use information

- What kind of problem?
 - Forward or backward? forward
 - May or must? may

Space of Data Flow Analyses

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
</tbody>
</table>

- Most data flow analyses can be classified this way
 - A few don’t fit: bidirectional analysis

- Lots of literature on data flow analysis

Data Flow Facts and Lattices

- Typically, data flow facts form a lattice
 - Example: Available expressions

- "top" \top
- "bottom" \bot

Partial Orders

- A partial order is a pair (P, \leq) such that
 - $\leq \subseteq P \times P$
 - \leq is reflexive: $x \leq x$
 - \leq is anti-symmetric: $x \leq y$ and $y \leq x \Rightarrow x = y$
 - \leq is transitive: $x \leq y$ and $y \leq z \Rightarrow x \leq z$
Lattices

- A partial order is a lattice if \(\sqcap \) and \(\sqcup \) are defined on any set:
 - \(\sqcap \) is the meet or greatest lower bound operation:
 \[x \sqcap y \leq x \quad \text{and} \quad x \sqcap y \leq y \]
 - if \(z \leq x \) and \(z \leq y \), then \(z \leq x \sqcap y \)
 - \(\sqcup \) is the join or least upper bound operation:
 \[x \leq x \sqcup y \quad \text{and} \quad y \leq x \sqcup y \]
 - if \(x \leq z \) and \(y \leq z \), then \(x \sqcup y \leq z \)

Lattices (cont’d)

- A finite partial order is a lattice if meet and join exist for every pair of elements
- A lattice has unique elements \(\bot \) and \(\top \) such that
 - \(x \sqcap \bot = \bot \quad x \sqcup \bot = x \)
 - \(x \sqcap \top = x \quad x \sqcup \top = \top \)
- In a lattice, \(x \leq y \) iff \(x \sqcap y = x \)
 - \(x \leq y \) iff \(x \sqcup y = y \)
- A partial order is a complete lattice if meet and join are defined on any set \(S \subseteq P \)

Forward Must Data Flow Algorithm

\[
\begin{align*}
\text{Out}(s) &= \text{Top} \text{ for all statements } s \\
// \text{Slight acceleration: } \text{Could set } \text{Out}(s) &= \text{Gen}(s) \cup (\text{Top} \cdot \text{Kill}(s)) \\
W &:= \{ \text{all statements} \} \quad (\text{worklist}) \\
\text{repeat} \\
& \quad \text{Take } s \text{ from } W \\
& \quad \text{ln}(s) := \sqcap_{s' \in \text{pred}(s)} \text{Out}(s') \\
& \quad \text{temp} := \text{Gen}(s) \cup (\text{ln}(s) - \text{Kill}(s)) \\
& \quad \text{if } (\text{temp} \neq \text{Out}(s)) \{ \\
& \quad \quad \text{Out}(s) := \text{temp} \\
& \quad \quad W := W \cup \text{succ}(s) \\
& \quad \} \\
& \quad \text{until } W = \emptyset
\end{align*}
\]

Monotonicity

- A function \(f \) on a partial order is monotonic if
 \[x \leq y \Rightarrow f(x) \leq f(y) \]
- Easy to check that operations to compute \(\text{In} \) and \(\text{Out} \) are monotonic
 - \(\text{ln}(s) := \sqcap_{s' \in \text{pred}(s)} \text{Out}(s') \)
 - \(\text{temp} := \text{Gen}(s) \cup (\text{ln}(s) - \text{Kill}(s)) \)
- Putting these two together,
 - \(\text{temp} := (\sqcap_{s' \in \text{pred}(s)} \text{Out}(s')) \)
Useful Lattices

- \((2^S, \subseteq)\) forms a lattice for any set \(S\)
 - \(2^S\) is the powerset of \(S\) (set of all subsets)
- If \((S, \leq)\) is a lattice, so is \((S, \geq)\)
 - i.e., lattices can be flipped

- The lattice for constant propagation

![Lattice Diagram](image)

Termination

- We know the algorithm terminates because
 - The lattice has finite height
 - The operations to compute \(\text{In}\) and \(\text{Out}\) are monotonic
 - On every iteration, we remove a statement from the worklist and/or move down the lattice

Forward Data Flow, Again

\[
\begin{align*}
\text{Out}(s) &= \text{Top} \quad \text{for all statements } s \\
W &:= \{ \text{all statements} \} \quad \text{(worklist)} \\
\text{repeat} \\
& \quad \text{Take } s \text{ from } W \\
& \quad \text{temp} := f_s(\bigcap_{s' \in \text{pred}(s)} \text{Out}(s')) \quad (f_s \text{ monotonic transfer fn}) \\
& \quad \text{if } (\text{temp} \neq \text{Out}(s)) \{ \\
& \quad \quad \text{Out}(s) := \text{temp} \\
& \quad \quad W := W \cup \text{succ}(s) \\
& \quad \} \\
& \quad \text{until } W = \emptyset
\end{align*}
\]

Lattices \((P, \leq)\)

- **Available expressions**
 - \(P = \) sets of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \) set of all expressions
- **Reaching Definitions**
 - \(P = \) set of definitions (assignment statements)
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \) empty set
Fixpoints

- We always start with Top
 - Every expression is available, no defns reach this point
 - Most optimistic assumption
 - Strongest possible hypothesis
 - = true of fewest number of states
- Revise as we encounter contradictions
 - Always move down in the lattice (with meet)
- Result: A greatest fixpoint

Lattices \((P, \leq)\), cont’d

- Live variables
 - \(P = \) sets of variables
 - \(S1 \cap S2 = S1 \cup S2\)
 - Top = empty set
- Very busy expressions
 - \(P = \) set of expressions
 - \(S1 \cap S2 = S1 \cap S2\)
 - Top = set of all expressions

Forward vs. Backward

\[
\text{Out}(s) = \text{Top} \text{ for all } s \\
W := \{ \text{ all statements } \} \\
\text{repeat} \\
\text{Take } s \text{ from } W \\
\text{temp} := f_s (\bigcap_{s' \in \text{pred}(s)} \text{Out}(s')) \\
\text{if } (\text{temp} \neq \text{Out}(s)) \{ \\
\text{Out}(s) := \text{temp} \\
W := W \cup \text{succ}(s) \\
\} \text{ until } W = \emptyset
\]

\[
\text{In}(s) = \text{Top} \text{ for all } s \\
W := \{ \text{ all statements } \} \\
\text{repeat} \\
\text{Take } s \text{ from } W \\
\text{temp} := f_s (\bigcap_{s' \in \text{succ}(s)} \text{In}(s')) \\
\text{if } (\text{temp} \neq \text{In}(s)) \{ \\
\text{In}(s) := \text{temp} \\
W := W \cup \text{pred}(s) \\
\} \text{ until } W = \emptyset
\]

Termination Revisited

- How many times can we apply this step:
 \[
 \text{temp} := f_s (\bigcap_{s' \in \text{pred}(s)} \text{Out}(s')) \\
 \text{if } (\text{temp} \neq \text{Out}(s)) \{ \ldots \}
 \]
- Claim: \(\text{Out}(s)\) only shrinks
 - Proof: \(\text{Out}(s)\) starts out as top
 - So \(\text{temp}\) must be \(\leq\) than Top after first step
 - Assume \(\text{Out}(s')\) shrinks for all predecessors \(s'\) of \(s\)
 - Then \(\cap s' \in \text{pred}(s) \text{Out}(s')\) shrinks
 - Since \(f_s\) monotonic, \(f_s (\bigcap_{s' \in \text{pred}(s)} \text{Out}(s'))\) shrinks
Termination Revisited (cont’d)

- A *descending chain* in a lattice is a sequence
 - \(x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \ldots\)
- The *height* of a lattice is the length of the longest descending chain in the lattice

- Then, dataflow must terminate in \(O(nk)\) time
 - \(n = \#\) of statements in program
 - \(k = \) height of lattice
 - assumes meet operation takes \(O(1)\) time

Least vs. Greatest Fixpoints

- Dataflow tradition: Start with Top, use meet
 - To do this, we need a *meet semilattice with top*
 - complete meet semilattice = meets defined for any set
 - finite height ensures termination
 - Computes greatest fixpoint

- Denotational semantics tradition: Start with Bottom, use join
 - Computes least fixpoint

Distributive Data Flow Problems

- By monotonicity, we also have
 \[f(x \sqcap y) \leq f(x) \sqcap f(y)\]

- A function \(f\) is distributive if
 \[f(x \sqcap y) = f(x) \sqcap f(y)\]

Benefit of Distributivity

- Joins lose no information

\[
k(h(f(T) \sqcap g(T))) = \]
\[
k(h(f(T))) \sqcap h(g(T))) = \]
\[
k(h(f(T))) \sqcap k(h(g(T))) = \]
Accuracy of Data Flow Analysis

- Ideally, we would like to compute the meet over all paths (MOP) solution:
 - Let f_s be the transfer function for statement s
 - If p is a path $\{s_1, ..., s_n\}$, let $f_p = f_{n};...;f_1$
 - Let $\text{path}(s)$ be the set of paths from the entry to s

$$\text{MOP}(s) = \bigcap_{p \in \text{path}(s)} f_p(T)$$

- If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution

What Problems are Distributive?

- Analyses of how the program computes
 - Live variables
 - Available expressions
 - Reaching definitions
 - Very busy expressions

- All Gen/Kill problems are distributive

A Non-Distributive Example

- Constant propagation

```
x := 1
y := 2
x := 2
y := 1
z := x + y
```

- In general, analysis of what the program computes is not distributive

Practical Implementation

- Data flow facts = assertions that are true or false at a program point

- Represent set of facts as bit vector
 - Fact i represented by bit i
 - Intersection = bitwise and, union = bitwise or, etc

- “Only” a constant factor speedup
 - But very useful in practice
Basic Blocks

• A basic block is a sequence of statements s.t.
 • No statement except the last in a branch
 • There are no branches to any statement in the block except the first

• In practical data flow implementations,
 • Compute Gen/Kill for each basic block
 - Compose transfer functions
 • Store only In/Out for each basic block
 • Typical basic block ~5 statements

Order Matters

• Assume forward data flow problem
 • Let $G = (V, E)$ be the CFG
 • Let k be the height of the lattice

• If G acyclic, visit in topological order
 • Visit head before tail of edge
• Running time $O(|E|)$
 • No matter what size the lattice

Order Matters — Cycles

• If G has cycles, visit in reverse postorder
 • Order from depth-first search

• Let $Q = \text{max} \# \text{back edges on cycle-free path}$
 • Nesting depth
 • Back edge is from node to ancestor on DFS tree

• Then if $\forall x. f(x) \leq x$ (sufficient, but not necessary)
 • Running time is $O((Q+1)|E|)$
 - Note direction of req’t depends on top vs. bottom

Flow-Sensitivity

• Data flow analysis is flow-sensitive
 • The order of statements is taken into account
 • I.e., we keep track of facts per program point

• Alternative: Flow-insensitive analysis
 • Analysis the same regardless of statement order
 • Standard example: types
 - /* $x : \text{int}$ */ $x := ... /*$ $x : \text{int}$ */
Terminology Review

- Must vs. May
 - (Not always followed in literature)
- Forwards vs. Backwards
- Flow-sensitive vs. Flow-insensitive
- Distributive vs. Non-distributive

Another Approach: Elimination

- Recall in practice, one transfer function per basic block

- Why not generalize this idea beyond a basic block?
 - “Collapse” larger constructs into smaller ones, combining data flow equations
 - Eventually program collapsed into a single node!
 - “Expand out” back to original constructs, rebuilding information

Lattices of Functions

- Let \((P, \leq)\) be a lattice
- Let \(M\) be the set of monotonic functions on \(P\)
- Define \(f \leq_f g\) if for all \(x, f(x) \leq g(x)\)
- Define the function \(f \sqcap g\) as
 - \((f \sqcap g)(x) = f(x) \sqcap g(x)\)
- Claim: \((M, \leq_f)\) forms a lattice

Elimination Methods: Conditionals

\[
f_{ite} = (f_{\text{then}} \circ f_{\text{if}}) \sqcap (f_{\text{else}} \circ f_{\text{if}})
\]

\[
\text{Out}(\text{if}) = f_{\text{if}}(\text{In}(\text{ite}))
\]

\[
\text{Out}(\text{then}) = (f_{\text{then}} \circ f_{\text{if}})(\text{In}(\text{ite}))
\]

\[
\text{Out}(\text{else}) = (f_{\text{else}} \circ f_{\text{if}})(\text{In}(\text{ite}))
\]
Elimination Methods: Loops

\[f_{\text{while}} = f_{\text{head}} \sqcap \]
\[f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \sqcap \]
\[f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \sqcap \cdots \]

Elimination Methods: Loops (cont’d)

- Let \(f^i = f \circ f \circ \cdots \circ f \) (i times)
 - \(f^0 = \text{id} \)
- Let \(g(j) = \sqcap_{i \in [0..j]} (f_{\text{head}} \circ f_{\text{body}})^i \circ f_{\text{head}} \)
- Need to compute limit as \(j \) goes to infinity
 - Does such a thing exist?
- Observe: \(g(j+1) \leq g(j) \)

Height of Function Lattice

- Assume underlying lattice \((P, \leq)\) has finite height
 - What is height of lattice of monotonic functions?
 - Claim: finite (see homework)

 Therefore, \(g(j) \) converges

Non-Reducible Flow Graphs

- Elimination methods usually only applied to reducible flow graphs
 - Ones that can be collapsed
 - Standard constructs yield only reducible flow graphs

 Unrestricted goto can yield non-reducible graphs
Comments

• Can also do backwards elimination
 ▪ Not quite as nice (regions are usually single entry but often not single exit)
• For bit-vector problems, elimination efficient
 ▪ Easy to compose functions, compute meet, etc.
• Elimination originally seemed like it might be faster than iteration
 ▪ Not really the case

Data Flow Analysis and Functions

• What happens at a function call?
 ▪ Lots of proposed solutions in data flow analysis literature
• In practice, only analyze one procedure at a time
• Consequences
 ▪ Call to function kills all data flow facts
 ▪ May be able to improve depending on language, e.g., function call may not affect locals

More Terminology

• An analysis that models only a single function at a time is intraprocedural
• An analysis that takes multiple functions into account is interprocedural
• An analysis that takes the whole program into account is...guess?

• Note: global analysis means “more than one basic block,” but still within a function

Data Flow Analysis and The Heap

• Data Flow is good at analyzing local variables
 ▪ But what about values stored in the heap?
 ▪ Not modeled in traditional data flow
• In practice: *x := e
 ▪ Assume all data flow facts killed (!)
 ▪ Or, assume write through x may affect any variable whose address has been taken

• In general, hard to analyze pointers
Data Flow Analysis and Optimization

- Moore’s Law: Hardware advances double computing power every 18 months.

- Proebsting’s Law: Compiler advances double computing power every 18 years.
 - Not so much bang for the buck!

DF Analysis and Defect Detection

- LCLint - Evans et al. (UVa)
- METAL - Engler et al. (Stanford, now Coverity)
- ESP - Das et al. (MSR)
- FindBugs - Hovemeyer, Pugh (Maryland)
 - For Java. The first three are for C.

- Many other one-shot projects
 - Memory leak detection
 - Security vulnerability checking (tainting, info. leaks)