Formalization of Data Flow Analysis in Coq

Alison Smith
Vikas Shivashankar
Motivation

• Coq provides a natural machinery for assisting with proofs that are traditionally difficult.

• Proving correctness of DFA techniques is important because of its many applications.
 – Optimizing compilers
 – Error checking
Review of Data Flow Analysis

- DFA operates on control flow graphs (CFGs)
 - Directed graphs
 - Nodes represent statements
 - Edges represent control flow
A Simple Language

- **Skip** --> do nothing
- **Copy** x a --> x := a
- **Plus** x a1 a2 --> x := a1 + a2
- **Minus** x a1 a2 --> x := a1 – a2
- **CondEq** a1 a2 n' --> if a1 = a2 then goto n'

Inductive **arg** : Type :=
| **AId** : id -> arg
| **ANat** : nat -> arg.

Inductive **label** : Type :=
| **Label** : nat -> label.

Inductive **stmt** : Type :=
| **Skip** : stmt
| **Copy** : id -> arg -> stmt
| **Plus** : id -> arg -> arg -> stmt
| **Minus** : id -> arg -> arg -> stmt
| **CondEq** : arg -> arg -> label -> stmt.
Control Flow Graph Example

0: X:=1
1: Y:=3
2: X:= Y-X
3: if x==1 then 2
4: Z:= 0
Lattices

• A partial order is a binary relation over a set which is reflexive, antisymmetric, and transitive.

• A lattice is a partial order over which meet (greatest lower bound) and join (least upper bound) are defined.

• Data flow facts form a lattice.
Data Flow Analysis – Signs

• Analysis maps each program label to a mapping from identifiers to their sign at the beginning of that statement
 – abstract state : id -> sign
 – analysis result : label -> abstract state

• Analysis is sound for a given cfg if it holds of all possible program runs.
Data Flow Analysis - Signs

Sign := Bot | Zero | Pos | Top

- Bot is the least informative abstract value of a sign, whereas Top is the most informative.
- At the beginning of analysis of a program, all ids are mapped to top and then successively refined with each statement.
0: X:=1
1: Y:=3
2: X:= Y-X
3: if x==1 then 2
4: Z:= 0
Data Flow Analysis - Signs

0: X := 1
1: Y := 3
2: X := Y - X
3: if x == 1 then 2
4: Z := 0
0: X:=1
1: Y:=3
2: X:= Y-X
3: if x==1 then 2
4: Z:= 0
0: X:=1
1: Y:=3
2: X:= Y-X
3: if x==1 then 2
4: Z:= 0
Data Flow Analysis - Signs

0: X:=1
1: Y:=3
2: X:= Y-X
3: if x==1 then 2
4: Z:= 0

Final state:

\{(X, bot), (Y, pos), (Z, zero)\}
Dataflow analysis in Coq

• Defining base language in Coq
• CFG definition
 – Examples of CFG evaluation
• DFA definition
 – Abstract state
 – Lattice
 – Sound Analysis
Coq demo
Sound Dataflow Analysis

- step : abstract_state -> stmt -> abstract_state
- meet : \(2^{\text{abstract_state}}\) -> abstract_state
- Theorem : \(\forall c : \text{cfg}, ar : \text{analysis_result},\)
 - \(c \sim ar\)
 - \(ar\) satisfies the above dataflow equations
 => \(ar\) is a fixpoint