Security via Type Qualifiers

Jeff Foster
University of Maryland

Joint work with Alex Aiken, Rob Johnson, John Kodumal, Tachio Terauchi, and David Wagner

Introduction

• Ensuring that software is secure is hard

• Standard practice for software quality:
 - Testing
 • Make sure program runs correctly on set of inputs
 - Code auditing
 • Convince yourself and others that your code is correct

Drawbacks to Standard Approaches

• Difficult
• Expensive
• Incomplete

• A malicious adversary is trying to exploit anything you miss!

Tools for Security

• What more can we do?
 - Build tools that analyze source code
 • Reason about all possible runs of the program
 - Check limited but very useful properties
 • Eliminate categories of errors
 • Let people concentrate on the deep reasoning
 - Develop programming models
 • Avoid mistakes in the first place
 • Encourage programmers to think about security
Tools Need Specifications

```
spin_lock_irqsave(&tty->read_lock, flags);
put_tty_queue_nolock(c, tty);
spin_unlock_irqrestore(&tty->read_lock, flags);
```

- Goal: Add specifications to programs
 - Programmers will accept
 - Lightweight
 - Scales to large programs
 - Solves many different problems

Type Qualifiers

- Extend standard type systems (C, Java, ML)
 - Programmers already use types
 - Programmers understand types
 - Get programmers to write down a little more...

```
const int
ptr(tainted char)
kernelptr(char) -> char
```

Application: Format String Vulnerabilities

- I/O functions in C use format strings

  ```
  printf("Hello!");  Hello!
  printf("Hello, %s!", name);  Hello, name!
  ```

- Instead of

  ```
  printf("%s", name);
  ```

- Why not

  ```
  printf(name);
  ```

- Instead of

  ```
  printf(name);
  ```

Format String Attacks

- Adversary-controlled format specifier

  ```
  name := <data-from-network>
  printf(name);  /* Oops */
  ```

 - Attacker sets name = "%s%s%s" to crash program
 - Attacker sets name = "...%n..." to write to memory

- Yields (often remote root) exploits

- Lots of these bugs in the wild
 - New ones weekly on bugtraq mailing list
 - Too restrictive to forbid variable format strings
Using Tainted and Untainted

- Add qualifier annotations
  ```c
  int printf(untainted char *fmt, ...)
  tainted char *getenv(const char *)
  ```

 tainted = may be controlled by adversary
 untainted = must not be controlled by adversary

Subtyping

```c
void f(tainted int);
void g(untainted int);
tainted int a;
untainted int b;
f(a);
g(b);
```

OK
- f accepts tainted or untainted data

Error
- g accepts only untainted data

- `untainted <= tainted`
- `tainted != untainted`
- `untainted <= tainted`

The Plan

- The Nice Theory
- Polymorphism
- The Icky Stuff in C

Demo of cqual

http://www.cs.umd.edu/~jfoster
Type Qualifiers for MinML

- We’ll add type qualifiers to MinML
 - Same approach works for other languages (like C)

- Standard type systems define types as
 - \(t ::= c_0(t, \ldots, t) \mid \ldots \mid c_n(t, \ldots, t) \)
 - Where \(\Sigma = c_0 \ldots c_n \) is a set of type constructors

- Recall the types of MinML
 - \(t ::= \text{int} \mid \text{bool} \mid t \rightarrow t \)
 - Here \(\Sigma = \text{int}, \text{bool}, \rightarrow \) (written infix)

Type Qualifiers for MinML (cont’d)

- Let \(Q \) be the set of type qualifiers
 - Assumed to be chosen in advance and fixed
 - E.g., \(Q = \{ \text{tainted}, \text{untainted} \} \)

- Then the qualified types are just
 - \(q_t ::= Q s \)
 - \(s ::= c_0(q_t, \ldots, q_t) \mid \ldots \mid c_n(q_t, \ldots, q_t) \)
 - Allow a type qualifier to appear on each type constructor

- For MinML
 - \(q_t ::= \text{int}^Q \mid \text{bool}^Q \mid q_t \rightarrow^Q q_t \)

Abstract Syntax of MinML with Qualifiers

\[
e ::= x \mid n \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e \mid \text{fun } f^Q(x:q_t):q_t = e \mid e \mid \text{annot}(Q, e) \mid \text{check}(Q, e)
\]

- \(\text{annot}(Q, e) = \text{“expression } e \text{ has qualifier } Q” \)
- \(\text{check}(Q, e) = \text{“fail if } e \text{ does not have qualifier } Q” \)
 - Checks only the top-level qualifier

- Examples:
 - \(\text{fun fread } (x:q_t):\text{int}^\text{tainted} = \ldots \text{annot(untainted, 42)} \)
 - \(\text{fun printf } (x:q_t):q_t' = \text{check(untainted, x)}, \ldots \)

Typing Rules: Qualifier Introduction

- Newly-constructed values have “bare” types

\[
G |-- n : \text{int}
\]

\[
G |-- \text{true} : \text{bool} \quad \quad G |-- \text{false} : \text{bool}
\]

- Annotation adds an outermost qualifier

\[
G |-- e_1 : s \\
G |-- \text{annot}(Q, e) : Q s
\]
Typing Rules: Qualifier Elimination

- By default, discard qualifier at destructors
 \[G |-- e_1 : \text{bool}^Q \quad G |-- e_2 : \text{qt} \quad G |-- e_3 : \text{qt} \]
 \[G |-- \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : \text{qt} \]
- Use `check()` if you want to do a test
 \[G |-- e_1 : \text{bool}^Q \]
 \[G |-- \text{check}(Q, e) : Q^s \]

Subtyping

- Our example used subtyping
 - If anyone expecting a T can be given an S instead, then S is a subtype of T.
 - Allows untainted to be passed to tainted positions
 - I.e., `check(tainted, annot(untainted, 42))` should typecheck
- How do we add that to our system?

Partial Orders

- Qualifiers \(Q \) come with a partial order \(\leq \):
 - \(q \leq q \) (reflexive)
 - \(q \leq p, p \leq q \Rightarrow q = p \) (anti-symmetric)
 - \(q \leq p, p \leq r \Rightarrow q \leq r \) (transitive)
- Qualifiers introduce subtyping
- In our example:
 - untainted \(<\) tainted

Example Partial Orders

- Lower in picture = lower in partial order
- Edges show \(\leq \) relations
Combining Partial Orders

- Let \((Q_1, \leq_1)\) and \((Q_2, \leq_2)\) be partial orders
- We can form a new partial order, their cross-product:
 \[
 (Q_1, \leq_1) \times (Q_2, \leq_2) = (Q, \leq)
 \]
 where
 - \(Q = Q_1 \times Q_2\)
 - \((a, b) \leq (c, d)\) if \(a \leq_1 c\) and \(b \leq_2 d\)

Example

- Makes sense with orthogonal sets of qualifiers
 - Allows us to write type rules assuming only one set of qualifiers

Extending the Qualifier Order to Types

\[
\begin{align*}
Q \leq Q' \\
\text{bool}^Q \leq \text{bool}^{Q'} \\
\text{int}^Q \leq \text{int}^{Q'}
\end{align*}
\]

- Add one new rule subsumption to type system

\[
\begin{align*}
G \vdash e : q_t \\
G \vdash e : q_t' \\
G \vdash e : q_t'
\end{align*}
\]

Use of Subsumption

- \(G \vdash e : q_t\)
- \(q_t \leq q_t'\)
- Means: If any position requires an expression of type \(q_t'\), it is safe to provide it a subtype \(q_t\)
Subtyping on Function Types

• What about function types?

 \[\text{qt1} \rightarrow^Q \text{qt2} \leq \text{qt1}' \rightarrow^Q \text{qt2}' \]

• Recall: S is a subtype of T if an S can be used anywhere a T is expected
 - When can we replace a call “f x” with a call “g x”?

Replacing “f x” by “g x”

• When is \(\text{qt1}' \rightarrow^Q \text{qt2}' \leq \text{qt1} \rightarrow^Q \text{qt2} \)?
• Return type:
 - We are expecting \(\text{qt2} \) (f’s return type)
 - So we can only return at most \(\text{qt2}' \)
 - \(\text{qt2}' \leq \text{qt2} \)
• Example: A function that returns tainted can be replaced with one that returns untainted

Replacing “f x” by “g x” (cont’d)

• When is \(\text{qt1}' \rightarrow^Q \text{qt2}' \leq \text{qt1} \rightarrow^Q \text{qt2} \)?
• Argument type:
 - We are supposed to accept \(\text{qt1} \) (f’s argument type)
 - So we must accept at least \(\text{qt1} \)
 - \(\text{qt1} \leq \text{qt1}' \)
• Example: A function that accepts untainted can be replaced with one that accepts tainted

Subtyping on Function Types

- We say that \(\rightarrow \) is
 - Covariant in the range (subtyping dir the same)
 - Contravariant in the domain (subtyping dir flips)
Dynamic Semantics with Qualifiers

• Operational semantics tags values with qualifiers
 – \(v ::= x \mid n^Q \mid \text{true}^Q \mid \text{false}^Q \)
 – \(\text{fun } f^Q (x : q_{t1}) : q_{t2} = e \)

• Evaluation rules same as before, carrying the qualifiers along, e.g.,

 \[
 \text{if true}^Q \ \text{then } e_1 \ \text{else } e_2 \rightarrow e_1
 \]

Dynamic Semantics with Qualifiers (cont’d)

• One new rule checks a qualifier:

 \[
 \text{check}(Q, v^Q) \rightarrow v
 \]

 – Evaluation at a check can continue only if the qualifier matches what is expected
 – Otherwise the program gets stuck
 – (Also need rule to evaluate under a check)

Soundness

• We want to prove
 – Preservation: Evaluation preserves types
 – Progress: Well-typed programs don’t get stuck

• Proof: Exercise
 – See if you can adapt proofs to this system
 – (Not too much work; really just need to show that check doesn’t get stuck)

Updateable References

• Our MinML language is missing side-effects
 – There’s no way to write to memory
 – Recall that this doesn’t limit expressiveness
 • But side-effects sure are handy
Language Extension

- **We’ll add ML-style references**
 - \(e ::= \ldots | \text{ref}^Q e | \text{le} | e := e \)
 - \(\text{ref}^Q e \) -- Allocate memory and set its contents to \(e \)
 - Returns memory location
 - \(Q \) is qualifier on pointer (not on contents)
 - \(\text{le} \) -- Return the contents of memory location \(e \)
 - \(e1 := e2 \) -- Update \(e1 \)'s contents to contain \(e2 \)
 - **Things to notice**
 - No null pointers (memory always initialized)
 - No mutable local variables (only pointers to heap allowed)

Static Semantics

- **Extend type language with references:**
 - \(qt ::= \ldots | \text{ref}^Q qt \)
 - Note: In ML the ref appears on the right
 - \(G |-- e : qt \)
 - \(G |-- \text{ref}^Q e : \text{ref}^Q qt \)
 - \(G |-- e1 : \text{ref}^Q qt \)
 - \(G |-- e2 : qt \)
 - \(G |-- e1 := e2 : qt \)

Subtyping References

- The **wrong rule for subtyping references is**
 \[Q \leq Q' \quad qt \leq qt' \]
 \[\text{ref}^Q qt \leq \text{ref}^Q qt' \]
- **Counterexample**
 \[
 \text{let } x = \text{ref } 0^{\text{untainted}} \text{ in } \\
 \text{let } y = x \text{ in } \\
 y := 3^{\text{tainted};} \\
 \text{check(untainted, lx)} \quad \text{oops!}
 \]

You’ve Got Aliasing!

- We have multiple names for the same memory location
 - But they have different types
 - *And we can write into memory at different types*
Solution #1: Java’s Approach

- Java uses this subtyping rule
 - If S is a subclass of T, then $S[]$ is a subclass of $T[]$

- Counterexample:
 - Foo[] a = new Foo[5];
 - Object[] b = a;
 - b[0] = new Object(); // forbidden at runtime
 - a[0].foo(); // …so this can’t happen

Solution #2: Purely Static Approach

- Reason from rules for functions
 - A reference is like an object with two methods:
 • get : unit \rightarrow qt
 • set : qt \rightarrow unit
 - Notice that qt occurs both co- and contravariantly

- The right rule:

\[
Q \leq Q' \quad qt \leq qt' \quad qt' \leq qt \\
\text{ref}^Q qt \leq \text{ref}^Q qt' \quad \text{or} \quad Q \leq Q' \quad qt = qt' \\
\text{ref}^Q qt \leq \text{ref}^Q qt'
\]

Challenge Problem: Soundness

- We want to prove
 - Preservation: Evaluation preserves types
 - Progress: Well-typed programs don’t get stuck

- Can you prove it with updateable references?
 - Hint: You’ll need a stronger induction hypothesis
 • You’ll need to reason about types in the store
 - E.g., so that if you retrieve a value out of the store, you know what type it has

Type Qualifier Inference

- Recall our motivating example
 - We gave a legacy C program that had no information about qualifiers
 - We added signatures only for the standard library functions
 - Then we checked whether there were any contradictions

- This requires type qualifier inference
Type Qualifier Inference Statement

- Given a program with
 - Qualifier annotations
 - Some qualifier checks
 - And no other information about qualifiers
- Does there exist a valid typing of the program?
- We want an algorithm to solve this problem

Type Checking vs. Type Inference

- Let’s think about C’s type system
 - C requires programmers to annotate function types
 - ...but not other places
 - E.g., when you write down 3 + 4, you don’t need to give that a type
 - So all type systems trade off programmer annotations vs. computed information
- Type checking = it’s “obvious” how to check
- Type inference = it’s “more work” to check

Why Do We Want Qualifier Inference?

- Because our programs weren’t written with qualifiers in mind
 - They don’t have qualifiers in their type annotations
 - In particular, functions don’t list qualifiers for their arguments
- Because it’s less work for the programmer
 - ...but it’s harder to understand when a program doesn’t type check

First Problem: Subsumption Rule

\[G |-- e : qt \quad qt \leq qt' \]

- We’re allowed to apply this rule at any time
 - Makes it hard to develop a deterministic algorithm
 - Type checking is not syntax driven
- Fortunately, we don’t have that many choices
 - For each expression e, we need to decide
 - Do we apply the "regular" rule for e?
 - Or do we apply subsumption (how many times)?
Getting Rid of Subsumption

- Lemma: Multiple sequential uses of subsumption can be collapsed into a single use
 - Proof: Transitivity of ≤

- So now we need only apply subsumption once after each expression

Getting Rid of Subsumption (cont'd)

- We can get rid of the separate subsumption rule
 - Incorporate it directly into the other rules

\[
\begin{align*}
G \vdash e_1 : q_t &\rightarrow q_t'' & \quad & G \vdash e_2 : q_t \\
q_t \leq q_t' &\leq Q' &\leq Q & q_t'' \leq q_t \\
\hline
G \vdash e_1 : q_t &\rightarrow q_t2 & \quad & G \vdash e_2 : q_t2 \\
\hline
G \vdash e_1 e_2 : q_t2
\end{align*}
\]

Getting Rid of Subsumption (cont'd)

- 1. Fold e_2 subsumption into rule

\[
\begin{align*}
G \vdash e_1 : q_t' &\rightarrow q_t'' \\
q_t1 \leq q_t' &\leq Q' &\leq Q & q_t'' \leq q_t2 \\
\hline
G \vdash e_1 : q_t1 &\rightarrow q_t2 & \quad & G \vdash e_2 : q_t \quad q_t \leq q_t1 \\
\hline
G \vdash e_1 e_2 : q_t2
\end{align*}
\]

Getting Rid of Subsumption (cont'd)

- 2. Fold e_1 subsumption into rule

\[
\begin{align*}
q_t1 \leq q_t' &\leq Q' &\leq Q & q_t'' \leq q_t2 \\
\hline
G \vdash e_1 : q_t' &\rightarrow q_t'' & \quad & G \vdash e_2 : q_t \quad q_t \leq q_t1 \\
\hline
G \vdash e_1 e_2 : q_t2
\end{align*}
\]
Getting Rid of Subsumption (cont’d)

• 3. We don’t use Q, so remove that constraint

\[
\begin{align*}
qt_1 \leq qt' & \quad qt'' \leq qt_2 \\
G |-- e_1 : qt' \rightarrow Q q'' & \quad G |-- e_2 : qt \quad qt \leq qt_1
\end{align*}
\]

\[
G |-- e_1 e_2 : qt_2
\]

Getting Rid of Subsumption (cont’d)

• 4. Apply transitivity of \leq
 - Remove intermediate qt_1

\[
\begin{align*}
qt'' \leq qt_2 \\
G |-- e_1 : qt' \rightarrow Q q'' & \quad G |-- e_2 : qt \quad qt \leq qt
\end{align*}
\]

\[
G |-- e_1 e_2 : qt_2
\]

Getting Rid of Subsumption (cont’d)

• 5. We’re going to apply subsumption afterward, so no need to weaken qt''

\[
\begin{align*}
G |-- e_1 : qt' \rightarrow Q q'' & \quad G |-- e_2 : qt \quad qt \leq qt'
\end{align*}
\]

\[
G |-- e_1 e_2 : qt''
\]

Getting Rid of Subsumption (cont’d)

• We apply the same reasoning to the other rules
 - We’re left with a purely syntax-directed system

• Good! Now we’re half-way to an algorithm
Second Problem: Assumptions

- Let’s take a look at the rule for functions:
 \[G, f : qt1 \rightarrow^Q qt2, x : qt1 |-- e : qt2' \quad qt2' \leq qt2 \]
 \[G |-- \text{fun } f^Q (x : qt1) : qt2 = e : qt1 \rightarrow^Q qt2 \]
- There’s a problem with applying this rule
 - We’re assuming that we’re given the argument type \(qt1 \) and the result type \(qt2 \)
 - But in the problem statement, we said we only have annotations and checks

Unknowns in Qualifier Inference

- We’ve got regular type annotations for functions
 - (We could even get away without these…)
 \[G, f : ? \rightarrow^Q ?, x : ? |-- e : qt2' \quad qt2' \leq qt2 \]
 \[G |-- \text{fun } f^Q (x : t1 : t2) = e : qt1 \rightarrow^Q qt2 \]
- How do we pick the qualifiers for \(f \)?
 - We generate fresh, unknown qualifier variables and then solve for them

Adding Fresh Qualifiers

- We’ll add qualifier variables \(a, b, c, \ldots \) to our set of qualifiers
 - (Letters closer to \(p, q, r \) will stand for constants)
- Define \(\text{fresh} : t \rightarrow qt \) as
 - \(\text{fresh}(\text{int}) = \text{int}^a \)
 - \(\text{fresh}(\text{bool}) = \text{bool}^a \)
 - \(\text{fresh}(\text{ref}^Q t) = \text{ref}^a \text{fresh}(t) \)
 - \(\text{fresh}(t1 \rightarrow t2) = \text{fresh}(t1) \rightarrow^a \text{fresh}(t2) \)
 - Where \(a \) is fresh

Rule for Functions

\[qt1 = \text{fresh}(t1) \quad qt2 = \text{fresh}(t2) \]
\[G, f : qt1 \rightarrow^Q qt2, x : qt1 |-- e : qt2' \quad qt2' \leq qt2 \]
\[G |-- \text{fun } f^Q (x : t1 : t2) = e : qt1 \rightarrow^Q qt2 \]
A Picture of Fresh Qualifiers

Where Are We?

• A syntax-directed system
 - For each expression, clear which rule to apply
• Constant qualifiers
• Variable qualifiers
 - Want to find a valid assignment to constant qualifiers
• Constraints $\alpha \leq \alpha'$ and $Q \leq Q'$
 - These restrict our use of qualifiers
 - These will limit solutions for qualifier variables

Qualifier Inference Algorithm

• 1. Apply syntax-directed type inference rules
 - This generates fresh unknowns and constraints among the unknowns
• 2. Solve the constraints
 - Either compute a solution
 - Or fail, if there is no solution
 - Implies the program has a type error
 - Implies the program may have a security vulnerability

Solving Constraints: Step 1

• Constraints of the form $\alpha \leq \alpha'$ and $Q \leq Q'$
 - $\alpha ::= \text{int}^Q \mid \text{bool}^Q \mid \alpha \rightarrow^Q \alpha \mid \text{ref}^Q \alpha$
• Solve by simplifying
 - Can read solution off of simplified constraints
• We'll present algorithm as a rewrite system
 - $S \Rightarrow S'$ means constraints S rewrite to (simpler) constraints S'
Solving Constraints: Step 1

- $S + \{ \text{int}^Q \leq \text{int}^{Q'} \} \implies S + \{ Q \leq Q' \}$
- $S + \{ \text{bool}^Q \leq \text{bool}^{Q'} \} \implies S + \{ Q \leq Q' \}$
- $S + \{ \text{qt1} \rightarrow^Q \text{qt2} \leq \text{qt1}' \rightarrow^{Q'} \text{qt2}' \} \implies$

 $S + \{ \text{qt1}' \leq \text{qt1} \} + \{ \text{qt2} \leq \text{qt2}' \} + \{ Q \leq Q' \}$
- $S + \{ \text{ref}^Q \text{qt1} \leq \text{ref}^{Q'} \text{qt2} \} \implies$

 $S + \{ \text{qt1} \leq \text{qt2} \} + \{ \text{qt2} \leq \text{qt1} \} + \{ Q \leq Q' \}$
- $S + \{ \text{mismatched constructors} \} \implies \text{error}$

 - Can’t happen if program correct w.r.t. std types

Solving Constraints: Step 2

- Our type system is called a \textit{structural subtyping system}
 - If $\text{qt} \leq \text{qt}'$, then qt and qt' have the same shape
- When we’re done with step 1, we’re left with constraints of the form $Q \leq Q'$
 - Where either of Q, Q' may be an unknown
 - This is called an \textit{atomic subtyping system}
 - That’s because qualifiers don’t have any “structure”

Constraint Generation

\text{ptr(int) } f(x : \text{int}) = \{ ... \} \quad y := f(z)

Constraints as Graphs
Some Bad News

- Solving atomic subtyping constraints is NP-hard in the general case
- The problem comes up with some really weird partial orders

But That's OK

- These partial orders don’t seem to come up in practice
 - Not very natural
- Most qualifier partial orders have one of two desirable properties:
 - They either always have least upper bounds or greatest lower bounds for any pair of qualifiers

Lubs and Glbs

- lub = Least upper bound
 - p lub q ≤ r such that
 - p ≤ r and q ≤ r
 - If p ≤ s and q ≤ s, then r ≤ s
- glb = Greatest lower bound, defined dually
- lub and glb may not exist

Lattices

- A lattice is a partial order such that lubs and glbs always exist
- If Q is a lattice, it turns out we can use a really simple algorithm to check satisfiability of constraints over Q
Satisfiability via Graph Reachability

Is there an inconsistent path through the graph?

(Various diagrams showing a graph with nodes labeled as $\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_8$ and edges indicating relationships between them. The states are marked as untainted or tainted.)

Satisfiability in Linear Time

- Initial program of size n
 - Fixed set of qualifiers tainted, untainted, ...

- Constraint generation yields $O(n)$ constraints
 - Recursive abstract syntax tree walk

- Graph reachability takes $O(n)$ time
 - Works for semi-lattices, discrete p.o., products
Limitations of Subtyping

- Subtyping gives us a kind of **polymorphism**
 - A *polymorphic* type represents multiple types
 - In a subtyping system, `qt` represents `qt` and all of `qt`'s subtypes

- As we saw, this flexibility helps make the analysis more precise
 - But it isn’t always enough…

Types for id

- `fun id (x:int):int = x` (ignoring int, qual on id)
 - `tainted` ➞ `tainted`
 - Fine but untainted data passed in becomes tainted
 - `untainted` ➞ `untainted`
 - Fine but can’t pass in tainted data
 - `untainted` ➞ `tainted`
 - Not too useful
 - `tainted` ➞ `untainted`
 - Impossible

Function Calls and Context-Sensitivity

- Consider `tainted` and `untainted` again
 - `untainted` ≤ `tainted`
- Let’s look at the identity function
 - `fun id (x:int):int = x`
- What qualified types can we infer for `id`?

Function Calls and Context-Sensitivity

- All calls to `strdup` conflated
 - *Monomorphic* or *context-insensitive*
What’s Happening Here?

- The qualifier on x appears both covariantly and contravariantly in the type
 - We’re stuck

- We need parametric polymorphism
 - We want to give fun id (x:int):int = x the type
 \(\forall a. \text{int}^a \rightarrow \text{int}^a \)

The Observation of Parametric Polymorphism

- Type inference on id yields a proof like this:

 - If we just infer a type for id, no constraints will be placed on a

The Observation of Parametric Polymorphism

- We can duplicate this proof for any a, in any type environment

 - The constraints on a only come from “outside”
The Observation of Parametric Polymorphism

- But the two uses of \textit{id} are different
 - We can inline \textit{id}
 - And compute a type with a different \textit{a} each time

Implementing Polymorphism Efficiently

- ML-style polymorphic type inference is \textit{EXPTIME}-hard
 - In practice, it's fine
 - Bad case can't happen here, because we're polymorphic \textit{only} in the qualifiers
 - That's because we'll apply this to \textit{C}
- We need polymorphically constrained types
 \[x : \forall a. qt \text{ where } C \]
 - For any qualifiers \textit{a} where constraints \textit{C} hold, \textit{x} has type \textit{qt}

Polymorphically Constrained Types

- Must copy constraints at each instantiation
 - Inefficient
 - (And hard to implement)

A Better Solution: CFL Reachability

- Can reduce this to another problem
 - Equivalent to the constraint-copying formulation
 - Supports polymorphic recursion in qualifiers
 - It's easy to implement
 - It's efficient \((O(n^3))\)
 - Previous best algorithm \(O(n^8)\)
- Idea due to Horwitz, Reps, and Sagiv, and Rehof, Fahndrich, and Das
The Problem Restated: Unrealizable Paths

- No execution can exhibit that particular call/return sequence

Only Propagate Along Realizable Paths

- Add edge labels for calls and returns
 - Only propagate along valid paths whose returns balance calls

Instantiation Constraints

- These edges represent a new kind of constraint
 - $a \leftrightarrow; b$
 - At use i of a polymorphic type
 - Qualifier variable a
 - Is instantiated to qualifier b
 - Either positively or negatively (or both)
 - Formally, these are semiunification constraints
 - But we won’t discuss that

Type Rules

- We’ll use Hindley–Milner style polymorphism
 - Quantifiers only appear at the outmost level
 - Quantified types only appear in the environment

\[
\begin{align*}
qt1 &= \text{fresh}(t1) & qt2 &= \text{fresh}(t2) \\
G, f : qt1 \rightarrow^Q qt2, x : qt1 &\vdash e : qt2' & qt2' \leq qt2 \\
G &\vdash \text{fun } f^Q (x : t1) : t2 = e : qt1 \rightarrow^Q qt2
\end{align*}
\]

- * This is not quite the right rule, yet...
Type Rules

\[qt = G(f) \quad qt' = \text{fresh}(qt) \quad qt \leq_i qt' \]

\[G |-- f_i : qt' \]

- Implicit: Only apply to function names (f)
- Each has a label i
- fresh(qt) generates type like qt but with fresh quals
 This is not quite the right rule yet…

Resolving Instantiation Constraints

- Just like subtyping, reduce to only qualifiers
 - \(S + \{ \text{int}^Q \leq \text{pi} \text{int}^Q \} \Rightarrow S + \{ Q \leq \text{pi} Q' \} \)
 * p stands for either + or -
 - \(S + \{ \text{qt}^1 \rightarrow^Q \text{qt}^2 \leq \text{pi} \text{qt}^1' \rightarrow^Q \text{qt}^2' \} \Rightarrow\)
 \(S + \{ \text{qt}^1 \leq (-p)\text{pi} \text{qt}^1' \} + \{ \text{qt}^2 \leq \text{pi} \text{qt}^2 \} + \{ Q \leq \text{pi} Q' \} \)
 * Here -(+) is - and -(-) is +

Instantiation Constraints as Graphs

- Three kinds of edges
 - \(Q \leq Q' \) becomes \(Q \rightarrow Q' \)
 - \(Q \leq_i Q' \) becomes \(Q \xrightarrow{i} Q' \)
 - \(Q \geq_i Q' \) becomes \(Q \xleftarrow{i} Q' \)

An Example (Stolen from RF01)

fun idpair (x:int*int):int*int = x in
fun f y = idpair (3^q, 4^p) in
let z = snd (f_2 0)
Two Observations

- We are doing constraint copying
 - Notice the edge from b to d got "copied" to p to f
 - We didn’t draw the transitive edge, but we could have

- This algorithm can be made demand-driven
 - We only need to worry about paths from constant qualifiers
 - Good implications for scalability in practice

CFL Reachability

- We’re trying to find paths through the graph whose edges are a language in some grammar
 - Called the CFL Reachability problem
 - Computable in cubic time

CFL Reachability Grammar

\[S ::= P \mid N \]
\[P ::= M \mid)i P \mid \text{empty} \]
\[N ::= M \mid (i N \mid \text{empty} \]
\[M ::= (i M)i \mid \text{empty} \]
\[M ::= (i M)i \mid \text{empty} \]
\[M ::= \text{regular subtyping edge} \]
\[M ::= \text{empty} \]

- Paths may have unmatched but not mismatched parens

Global Variables

- Consider the following identity function
 \[
 \text{fun id(x:int):int} = \ z := x; \ !z
 \]
 - Here z is a global variable
- Typing of id, roughly speaking:

 \[
 \begin{aligned}
 \text{z} & \rightarrow \text{b} \\
 \text{a} & \rightarrow \text{b} \\
 \end{aligned}
 \]
 id : a \rightarrow b
Global Variables

- Suppose we instantiate and apply \(id \) to \(q \) inside of a function

\[
d \rightarrow^2 z \rightarrow^1 c \quad a \rightarrow^1 q
\]
- And then another function returns \(z \)
- Uh oh! \((1)^2 \) is not a valid flow path
 - But \(q \) may certainly pop out at \(d \)

Thou Shalt Not Quantify a Global Type (Qualifier) Variable

- We violated a basic rule of polymorphism
 - We generalized a variable free in the environment
 - In effect, we duplicated \(z \) at each instantiation

- Solution: Don’t do that!

Our Example Again

- We want anything flowing into \(z \), on any path, to flow out in any way
 - Add a self-loop to \(z \) that consumes any mismatched parens

Typing Rules, Fixed

- Track unquantifiable vars at generalization

\[
\begin{align*}
qt1 &= \text{fresh}(t1) \\
qt2 &= \text{fresh}(t2) \\
G, f : (qt1 \rightarrow^Q qt2, v), x : qt1 &\vdash e : qt2' & qt2' \leq qt2 \\
v &= \text{free vars of } G \\
G &\vdash \text{fun } f^Q (x : t1) : t2 = e : (qt1 \rightarrow^Q qt2, v)
\end{align*}
\]
Typing Rules, Fixed

- Add self-loops at instantiation

\[
\begin{align*}
(q_\text{f}, v) &= G(f) & q_\text{f}' &= \text{fresh}(q_\text{f}) & q_\text{f} \triangleright i & q_\text{f}' \\
& & v \triangleright i & v & v \triangleright i & v & G \vdash f : q_\text{f}'
\end{align*}
\]

Efficiency

- Constraint generation yields \(O(n)\) constraints
 - Same as before
 - Important for scalability
- Context-free language reachability is \(O(n^3)\)
 - But a few tricks make it practical (not much slowdown in analysis times)
- For more details, see
 - Rehof + Fahndrich, POPL’01

Introduction

- That’s all the theory behind this system
 - More complicated system: flow-sensitive qualifiers
 - Not going to cover that here
 - (Haven’t applied it to security)
- Suppose we want to apply this to a language like C
 - It doesn’t quite look like MinML!
Local Variables in C

• The first (easiest) problem: C doesn’t use ref
 - It has malloc for memory on the heap
 - But local variables on the stack are also updateable:
    ```c
    void foo(int x) {
        int y;
        y = x + 3;
        y++;  
        x = 42;
    }
    ```

• The C types aren’t quite enough
 - 3 : int, but can’t update 3!

L-Types and R-Types

• C hides important information:
 - Variables behave different in l- and r-positions
 • l = left-hand-side of assignment, r = rhs
 - On lhs of assignment, x refers to location x
 - On rhs of assignment, x refers to contents of location x

Mapping to MinML

• Variables will have ref types:
 - x : ref<contents type>
 - Parameters as well, but r-types in fn sigs
• On rhs of assignment, add deref of variables
  ```minml
  void foo(int x) {
      int y;
      y = x + 3;
      y++;  
      x = 42;
  }
  ```

Multiple Files

• Most applications have multiple source code files
• If we do inference on one file without the others, won’t get complete information:
  ```minml
  extern int t;  
  $tainted int t = 0;
  x = t;
  ```
 - Problem: In left file, we’re assuming t may have any qualifier (we make a fresh variable)
Multiple Files: Solution #1

• Don’t analyze programs with multiple files!

• Can use CIL merger from Necula to turn a multi-file app into a single-file app
 - E.g., I have a merged version of the Linux kernel, 470432 lines

• Problem: Want to present results to user
 - Hard to map information back to original source

Multiple Files: Solution #2

• Make conservative assumptions about missing files
 - E.g., anything globally exposed may be tainted

• Problem: Very conservative
 - Going to be hard to infer useful types

Multiple Files: Solution #3

• Give tool all files at same time
 - Whole-program analysis

• Include files that give types to library functions
 - In CQual, we have prelude.cq

• Unify (or just equate) types of globals

• Problem: Analysis really needs to scale

Structures (or Records): Scalability Issues

• One problem: Recursion
 - Do we allow qualifiers on different levels to differ?

    ```c
    struct list {
        int elt;
        struct list *next;
    }
    ```
 - Our choice: no (we don't want to do shape analysis)
Structures: Scalability Issues

- Natural design point: All instances of the same struct share the same qualifiers
- This is what we used to do
 - Worked pretty well, especially for format-string vulnerabilities
 - Scales well to large programs (linear in program size)
- Fell down for user/kernel pointers
 - Not precise enough

Multiple Structure Instances

- Instantiate struct types lazily
 - When we see
    ```c
    struct inode x;
    ```
 we make an empty record type for x with a pointer to type struct inode
 - Each time we access a field f of x, we add fresh qualifiers for f to x's type (if not already there)
 - When two instances of the same struct meet, we unify their records
 - This is a heuristic we've found is acceptable

Subtyping Under Pointer Types

- Recall we argued that an updateable reference behaves like an object with get and set operations
- Results in this rule:
 \[
 Q \leq Q' \quad q_t \leq q_t' \quad q_t' \leq q_t
 \]
 \[
 \text{ref}^Q q_t \leq \text{ref}^Q q_t'
 \]
- What if we can't write through reference?
Subtyping Under Pointer Types

- C has a type qualifier `const`
 - If you declare `const int *x`, then `*x = ...` not allowed
- So `const` pointers don’t have “get” method
 - Can treat `ref` as covariant

\[Q \leq Q' \quad q_t \leq q_t' \quad \text{const} \leq Q' \]
\[\text{ref}^Q q_t \leq \text{ref}^Q q_t' \]

Subtyping Under Pointer Types

- Turns out this is very useful
 - We’re tracking taintedness of strings
 - Many functions read strings without changing their contents
 - Lots of use of `const` + opportunity to add it

Presenting Inference Results

Type Casts
Experiment: Format String Vulnerabilities

- Analyzed 10 popular unix daemon programs
 - Annotations shared across applications
 - One annotated header file for standard libraries
 - Includes annotations for polymorphism
 - Critical to practical usability
 - Found several known vulnerabilities
 - Including ones we didn’t know about
- User interface critical

Results: Format String Vulnerabilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Warn</th>
<th>Bugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>identd-1.0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mingetty-0.9.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bftpd-1.0.11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>muh-2.05d</td>
<td>2</td>
<td>~2</td>
</tr>
<tr>
<td>cfengine-1.5.4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>imapd-4.7c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ipopd-4.7c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mars_nwe-0.99</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>apache-1.3.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>openssh-2.3.0p1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Experiment: User/kernel Vulnerabilities (Johnson + Wagner 04)

- In the Linux kernel, the kernel and user/mode programs share address space
 - The top 1GB is reserved for the kernel
 - When the kernel runs, it doesn’t need to change VM mappings
- Just enable access to top 1GB
 - When kernel returns, prevent access to top 1GB

Tradeoffs of This Memory Model

- Pros:
 - Not a lot of overhead
 - Kernel has direct access to user space
- Cons:
 - Leaves the door open to attacks from untrusted users
 - A pain for programmers to put in checks
An Attack

• Suppose we add two new system calls
 \[
 \text{int } x; \\
 \text{void sys_setint(int } *p) \{ \text{memcpy(}&x, \text{p, sizeof(x)}); \} \\
 \text{void sys_getint(int } *p) \{ \text{memcpy(p, } &x, \text{ sizeof(x)}); \}
 \]

• Suppose a user calls \text{getint(buf)}
 - Well-behaved program: \text{buf} points to user space
 - Malicious program: \text{buf} points to unmapped memory
 - Malicious program: \text{buf} points to kernel memory
 • We’ve just written to kernel space! Oops!

Another Attack

• Can we compromise security with \text{setint(buf)}?
 - What if \text{buf} points to private kernel data?
 • E.g., file buffers
 - Result can be read with \text{getint}

The Solution: \text{copy_from_user, copy_to_user}

• Our example should be written
 \[
 \text{int } x; \\
 \text{void sys_setint(int } *p) \{ \text{copy_from_user(}&x, \text{p, sizeof(x)}); \} \\
 \text{void sys_getint(int } *p) \{ \text{copy_to_user(p, } &x, \text{ sizeof(x)}); \}
 \]

• These perform the required safety checks
 - Return number of bytes that couldn’t be copied
 - \text{from_user} pads destination with 0’s if couldn’t copy

It’s Easy to Forget These

• Pointers to kernel and user space look the same
 - That’s part of the point of the design
• Linux 2.4.20 has 129 syscalls with pointers to user space
 - All 129 of those need to use \text{copy_from/to}
 - The \text{ioctl} implementation passes user pointers to device drivers (without sanitizing them first)
• The result: Hundreds of \text{copy_from/to}
 - One (small) kernel version: 389 from, 428 to
 - And there’s no checking
User/Kernel Type Qualifiers

- We can use type qualifiers to distinguish the two kinds of pointers
 - kernel -- This pointer is under kernel control
 - user -- This pointer is under user control

- Subtyping kernel < user
 - It turns out copy_from/copy_to can accept pointers to kernel space where they expect pointers to user space

Type Signatures

- We add signatures for the appropriate fns:
 - int copy_from_user(void *kernel to, void *user from, int len)
 - int memcpy(void *kernel to, void *kernel from, int len)

Lives in kernel

- int x;
- void sys_setint(int *user p) {
 copy_from_user(&x, p, sizeof(x)); }
- void sys_getint(int *user p) {
 memcpy(p, &x, sizeof(x)); }

Qualifiers and Type Structure

- Consider the following example:
 - void ioctl(void *user arg) {
 struct cmd { char *datap; } c;
 copy_from_user(&c, arg, sizeof©);
 c.datap[0] = 0; // not a good idea
 }

- The pointer arg comes from the user
 - So datap in c also comes from the user
 - We shouldn't deference it without a check

Well-Formedness Constraints

- Simpler example
 - char **user p;
 - Pointer p is under user control
 - Therefore so is *p

- We want a rule like:
 - In type refuser (Q s), it must be that Q ≤ user
 - This is a well-formedness condition on types
Well-Formedness Constraints

• As a type rule
 \[|--wf (Q' s) \quad Q' \leq Q \]
 \[|--wf \text{ref}^Q (Q' s) \]
 - We implicitly require all types to be well-formed

• But what about other qualifiers?
 - Not all qualifiers have these structural constraints
 - Or maybe other quals want \(Q \leq Q' \)

Well-Formedness Constraints

• Use conditional constraints
 \[|--wf (Q' s) \quad Q \leq \text{user} \Rightarrow Q' \leq \text{user} \]
 \[|--wf \text{ref}^Q (Q' s) \]
 - “If \(Q \) must be \(\text{user} \), then \(Q' \) must be also”

• Specify on a per-qualifier level whether to generate this constraint
 - Not hard to add to constraint resolution

Well-Formedness Constraints

• Similar constraints for \text{struct} types
 \[\text{For all } i, \quad |--wf (Q_i s_i) \quad Q \leq \text{user} \Rightarrow Q_i \leq \text{user} \]
 \[|--wf \text{struct}^Q (Q_1 s_1, \ldots, Q_n s_n) \]
 - Again, can specify this per-qualifier

A Tricky Example

```c
int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
                 unsigned long arg) {
    ...case I2C_RDWR:
        if (copy_from_user(&rdwr_arg, (struct i2c_rdwr_ioctl_data *) arg,
                           sizeof(rdwr_arg)))
            return -EFAULT;
        for (i = 0; i < rdwr_arg.nmsgs; i++) {
            if (copy_from_user(rdwr_pa[i].buf,
                               rdwr_arg.msgs[i].buf,
                               rdwr_pa[i].len)) {
                res = -EFAULT; break;
            }
        }
    }
```
A Tricky Example

```c
int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
    unsigned long arg) {
    ...case I2C_RDWR:
        if (copy_from_user(&rdwr_arg,
            (struct i2c_rdwr_iotcl_data *) arg,
            sizeof(rdwr_arg)))
            return -EFAULT;
        for (i = 0; i < rdwr_arg.nmsgs; i++) {
            if (copy_from_user(rdwr_pa[i].buf,
                rdwr_arg.msgs[i].buf,
                rdwr_pa[i].len)) {
                res = -EFAULT; break;
            }
        }
}
```

Experimental Results

- Ran on two Linux kernels
 - 2.4.20 -- 11 bugs found
 - 2.4.23 -- 10 bugs found
- Needed to add 245 annotations
 - Copy_from/to, kmalloc, kfree, ...
 - All Linux syscalls take user args (221 calls)
 - Could have been done automagically (All begin with sys_)
- Ran both single file (unsound) and whole-kernel
 - Disabled subtyping for single file analysis
More Detailed Results

• 2.4.20, full config, single file
 - 512 raw warnings, 275 unique, 7 exploitable bugs
 • Unique = combine msgs for user qual from same line
• 2.4.23, full config, single file
 - 571 raw warnings, 264 unique, 6 exploitable bugs
• 2.4.23, default config, single file
 - 171 raw warnings, 76 unique, 1 exploitable bug
• 2.4.23, default config, whole kernel
 - 227 raw warnings, 53 unique, 4 exploitable bugs

Observations

• Quite a few false positives
 - Large code base magnifies false positive rate
• Several bugs persisted through a few kernels
 - 8 bugs found in 2.4.23 that persisted to 2.5.63
 - An unsound tool, MECA, found 2 of 8 bugs
 => Soundness matters!

• Of 11 bugs in 2.4.23...
 - 9 are in device drivers
 - Good place to look for bugs!
 - Note: errors found in "core" device drivers
 • (4 bugs in PCMCIA subsystem)

• Lots of churn between kernel versions
 - Between 2.4.20 and 2.4.23
 • 7 bugs fixed
 • 5 more introduced

Conclusion

• Type qualifiers are specifications that...
 - Programmers will accept
 • Lightweight
 - Scale to large programs
 - Solve many different problems
• In the works: ccqual, jqual, Eclipse interface