Static Single Assignment Form and Dominators

Motivation

- Data flow analysis needs to represent facts at every program point

- What if
 - There are a lot of facts and
 - There are a lot of program points?
 - \(\Rightarrow \) potentially takes a lot of space/time

- Most likely, we’re keeping track of irrelevant facts

Example

```
x := 3
y := a + b
z := 2 * y
w := y + z

a > b
y := a - b
y := y * 10
w := w + y
z := w + x
```

Sparse Representation

- Instead, we’d like to use a sparse representation
 - Only propagate facts about \(x \) where they’re needed

- Enter *static single assignment* form
 - Each variable is defined (assigned to) exactly once
 - But may be used multiple times
Example: SSA

- Add SSA edges from definitions to uses
 - No intervening statements use/define variable
 - Safe to propagate only along SSA edges

What About Joins?

- Add Φ functions/nodes to model joins
 - Intuitively, takes meet of arguments
 - At code generation time, need to eliminate Φ nodes

Constant Propagation Revisited

- Initialize facts at each program point
 - $C(n) := \text{top}$
- Add all SSA edges to the worklist
- While the worklist isn’t empty,
 - Remove an edge (x, y) from the worklist
 - $C(y) := C(y) \text{ meet } C(x)$
 - Add SSA edges from y if $C(y)$ changed

Def-Use Chains vs. SSA

- Alternative: Don’t do renaming; instead, compute simple def-use chains (reaching definitions)
 - Propagate facts along def-use chains
- Drawback: Potentially quadratic size
Def-Use Chains vs. SSA (cont’d)

Def-Use Chains

case (...)
0: a := 1;
1: a := 2;
2: a := 3;
end

SSA Form

• So far, we assume that all branches can be taken
 ▪ But what if some branches are never taken in practice?
 - Debugging code that can be enabled/disabled at run time
 - Macro expanded code with constants
 - Optimizations

 • Idea: use constant propagation to decide which branches might be taken
 ▪ Fits in neatly with SSA form

Conditional Constant Propagation

Nodes versus Edges

• So far, we’ve been hazy about whether data flow facts are associated with nodes or edges
 ▪ Advantage of nodes: may be fewer of them
 ▪ Advantage of edges: can trace differences on multiple paths to same node

• For this problem, we’ll associate facts with edges

Conditional Execution

• Keep track of whether edges may be executed
 ▪ Some may not be because they’re on not-taken branch
 ▪ Initially, assume no edges taken
 ▪ At joins, don’t propagate information from not-taken in-edges

• Side comment: Notice that we always, always start with the optimistic assumption
 ▪ We need proof that a pessimistic fact holds
 ▪ We’re computing a greatest fixpoint
Example

Computing SSA Form

- Step 1: Compute the dominance frontier
- Step 2: Use dominance frontier to place Φ nodes
 - Naive, impractical step 2: put a Φ function for every variable at the beginning of every block
 - Better: If node X contains assignment to a, put Φ function for a in dominance frontier of X
 - Adding Φ fn may require introducing additional Φ fn
- Step 3: Rename variables so only one definition per name

Dominators

- Let X and Y be nodes in the CFG
 - Assume single entry point Entry
- X dominates Y (written X ≥ Y) if
 - X appears on every path from Entry to Y
- Write X > Y when X dominates Y but X ≠ Y
 - Note ≥ is reflexive

Dominator Tree

- The dominator relationship forms a tree
 - Edge from parent to child = parent dominates child
 - Note: edges are not same as CFG edges!
Computing Dominator Tree

• Standard algorithm due to Lengauer and Tarjan

• Runs in time $O(E\alpha(E, N))$
 - $E = \#$ of edges, $N = \#$ of nodes
 - where $\alpha(\cdot)$ is the inverse Ackerman’s function
 - Very slow growing; effectively constant in practice

• Algorithm quite difficult to understand
 - But lots of pseudo-code available

Why Are Dominators Useful?

• Computing static single assignment form

• Computing control dependencies

• Identify loops in CFG
 - All nodes X dominated by entry node H, where X can reach H, and there is exactly one back edge (head dominates tail) in loop

Where do Φ Functions Go?

• We need a Φ function at node Z if
 - Two non-null CFG paths that both define v
 - Such that both paths start at two distinct nodes and end at Z

Dominance Frontiers: Illustration

Φ Functions Go:

Φ Functions Go:

Dominance Frontiers: Illustration

- $v \leftarrow 3$
- $v \leftarrow 4$

Dominated by X

Dominance Frontier of X
Dominance Frontiers

- \(Y \) is in the dominance frontier of \(X \) iff
 - There exists a path from \(X \) to \(\text{Exit} \) through \(Y \) such that \(Y \) is the first node not strictly dominated by \(X \)
- Equivalently:
 - \(Y \) is the first node where a path from \(X \) to \(\text{Exit} \) and a path from \(\text{Entry} \) to \(\text{Exit} \) (not going through \(X \)) meet
- Equivalently:
 - \(X \) dominates a predecessor of \(Y \)
 - \(X \) does not strictly dominate \(Y \)

Example

\[
\begin{array}{c}
\text{Entry} \\
\downarrow \\
1 \\
\downarrow \\
2 \\
\downarrow \\
3 \\
\downarrow \\
4 \\
\downarrow \\
5 \\
\downarrow \\
\downarrow \\
6 \\
\downarrow \\
7 \\
\downarrow \\
\text{Exit}
\end{array}
\]

- \(\text{DF}(1) = \{1\} \)
- \(\text{DF}(2) = \{7\} \)
- \(\text{DF}(3) = \{6\} \)
- \(\text{DF}(4) = \{6\} \)
- \(\text{DF}(5) = \{1, 7\} \)
- \(\text{DF}(6) = \{7\} \)
- \(\text{DF}(7) = \emptyset \)

Computing Dominance Frontiers

- Two components to \(\text{DF}(X) \):
 - \(\text{DF}_{\text{local}}(X) = \{Y \in \text{succ}(X) \mid X \nless Y\} \)
 - Any child of \(X \) not (strictly) dominated by \(X \) is in \(\text{DF}(X) \)
 - Let \(Z \) be such that \(\text{idom}(Z) = X \)
 - \(\text{idom}(Z) \) is the parent of \(Z \) in the dominator tree
 - \(\text{DF}_{\text{up}}(Z) = \{Y \in \text{DF}(Z) \mid X \ngtr Y\} \)
 - Nodes from \(\text{DF}(Z) \) that are not strictly dominated by \(X \) are also in \(\text{DF}(X) \)

Why Is This Sufficient?

- Suppose \(Y \in \text{DF}(X) \)
 - Then there is a \(U \in \text{pred}(Y) \) such that \(X \geq U, X \ngtr Y \)
 - If \(U = X \), then \(U \in \text{DF}_{\text{local}}(X) = \{Y \in \text{succ}(X) \mid X \nless Y\} \)
 - Otherwise \(U \neq X \)
 - Then there is a node \(Z \) such that \(\text{idom}(Z) = X \) and \(Z \geq U \)
 - Possibly \(Z = U \)
 - Since \(X \nless Y, Z \nless Y \), hence \(Y \in \text{DF}(Z) \)
 - Therefore \(Y \in \text{DF}_{\text{up}}(Z) = \{Y \in \text{DF}(Z) \mid X \ngtr Y\} \)
Algorithm

• Let \(sdom(X) = \{ Y | X > Y \} \)
• In a postorder traversal on dominator tree
 - \(DF(X) = succ(X) - sdom(X) \)
 - i.e., \(DF(X) = DF_{local}(X) \)
 - For each \(Z \) such that \(idom(Z) = X \) do
 - \(DF(X) = DF(X) \cup (DF(Z) - sdom(X)) \)
 - i.e., \(DF(X) = DF(X) \cup DF_{up}(Z) \)

Equivalent Algorithm

• In a postorder traversal on dominator tree
 - \(DF(X) = succ(X) \)
 - For each \(Z \) such that \(idom(Z) = X \) do
 - \(DF(X) = DF(X) \cup DF(Z) \)
 - \(DF(X) = DF(X) - sdom(X) \)

• There's another equivalent algorithm that runs in \(O(E + |DF|) \)

Computing SSA Form

• Step 1: Compute the dominance frontier
• Step 2: Use dominance frontier to place \(\Phi \) nodes
• Step 3: Rename variables so only one definition per name

Step 2: Placing \(\Phi \) Functions for \(v \)

• Let \(S \) be the set of nodes that define \(v \)
• Need to place \(\Phi \) function in every node in \(DF(S) \)
 - Recall, those are all the places where the definition of \(v \) in \(S \) and some other definition of \(v \) may meet
 - But a \(\Phi \) function adds another definition of \(v \)!
 - \(v := \Phi(v, ..., v) \)
 - So, iterate
 - \(DF_i = DF(S) \)
 - \(DF_{i+1} = DF(S \cup DF_i) \)
Example

Step 3: Renaming Variables

- Top-down (DFS) traversal of dominator tree
 - At definition of v, push new # for v onto the stack
 - When leaving node with definition of v, pop stack
 - Intuitively: Works because there’s a Φ function, hence a new definition of v, just beyond region dominated by definition

- Can be done in $O(E+|DF|)$ time
 - Linear in size of CFG with Φ functions

Eliminating Φ Functions

- Basic idea: Φ represents facts that value of join may come from different paths
 - So just set along each possible path

Eliminating Φ Functions in Practice

- Copies performed at Φ fns may not be useful
 - Joined value may not be used later in the program
 - (So why leave it in?)

- Use dead code elimination to kill useless Φs

- Subsequent register allocation will map the (now very large) number of variables onto the actual set of machine register
Efficiency in Practice

- Claimed:
 - SSA grows linearly with size of program
 - No correlation between ratio and program size

<table>
<thead>
<tr>
<th>Package name</th>
<th>Statements in all procedures</th>
<th>Statements per procedure</th>
<th>Min</th>
<th>Median</th>
<th>Max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EISPACK</td>
<td>7,054</td>
<td>22</td>
<td>89</td>
<td>257</td>
<td></td>
<td>Dense matrix eigenvectors and values</td>
</tr>
<tr>
<td>FLOPS</td>
<td>2,054</td>
<td>9</td>
<td>54</td>
<td>351</td>
<td></td>
<td>Flow past an airfoil</td>
</tr>
<tr>
<td>SPICE</td>
<td>14,083</td>
<td>8</td>
<td>43</td>
<td>753</td>
<td></td>
<td>Circuit simulation</td>
</tr>
<tr>
<td>Totals</td>
<td>23,181</td>
<td>8</td>
<td>55</td>
<td>753</td>
<td></td>
<td>221 FORTRAN procedures</td>
</tr>
</tbody>
</table>

Convincing?

Arrays

- Need to handle array accesses

- Problem: How do we know whether A[i], A[j], and B[k] are all distinct?
 - Could have A=B, e.g., foo(int A[], int B[]){ ... foo(a,a)
 - Could have i=j

- History: significant research on determining array dependencies, for parallelizing compilers

Arrays (cont’d)

- One possibility: make arrays immutable
 - Then don’t need to worry about updates to them

 * := A(i);
 A(j) := V;
 * := A(k) + 2;
 T := A(k);
 * := T + 2;

- Update(A, j, V) makes a copy of A
 - Then try to collapse unnecessary copies

Convincing?
Structures

- Can treat structures as sets of variables

```plaintext
* := A.f;  // X = A.f
A.g := V;
* := A.f + A.g

* := X;  // X = A.f
Y := V;  // Y = A.g
* := X + Y
```

- Problems?

Pointers

- For each statement S, let
 - $\text{MustMod}(S)$ = variables always modified by S
 - $\text{MayMod}(S)$ = variables sometimes modified by S
 - So if $v \notin \text{MayMod}(S)$, then S must not modify v
 - $\text{MayUse}(S)$ = variables sometimes used by S

 - Then assume that statement S
 - writes to $\text{MayMod}(S)$
 - reads $\text{MayUse}(S) \cup (\text{MayMod}(S) - \text{MustMod}(S))$

 - Convincing? We'll talk more about pointers later

Control Dependence

- Y is control dependent on X if whether Y is executed depends on a test at X

- A, B, and C are control dependent on X

Postdominators and Control

- Y postdominates X if every path from X to Exit contains Y
 - I.e., if X is executed, then Y is always executed

 - Then, Y is control dependent on X if
 - There is a path $X \rightarrow Z_1 \rightarrow \cdots \rightarrow Z_n \rightarrow Y$ such that Y postdominates all Z_i and
 - Y does not postdominate X
 - I.e., there is some path from X on which Y is always executed, and there is some path on which Y is not executed
Dominance Frontiers, Take 2

- Postdominators are just dominators on the CFG with the edges reversed

- To see what Y is control dependent on, we want to find the Xs such that in the reverse CFG
 - There is a path $X \leftarrow Z_1 \leftarrow \cdots \leftarrow Z_n \leftarrow Y$ where
 - for all i, $Y \geq Z_i$ and
 - $Y \neq X$

- I.e., we want to find $DF(Y)$ in the reverse CFG!