Overview

- Why? Graphs are very large and operations often done in-memory
- Overview of techniques
 - Graph layout: “minimum-linear-arrangement” problem
 - Linearize the nodes so that average “stretch” of an edge is minimized
 - Minimum-bandwidth problem asks for minimizing max (instead of avg)
 - Identify and replace dense structures
 - E.g., if there is a clique, replace with a special node and edges to the members
 - Neighborhood similarities
 - If two nodes have identical neighborhoods, can store a pointer from one to the other
 - Many works appear to have done this independently
Issues

- Incremental maintenance?
- Labels vs no labels
 - Having edge labels would make some techniques inapplicable
- Queries?
 - Must be able to process the graph efficiently – preferably without decompressing the whole graph
 - Any compression must come at the expense of query answering
 - So: Identify queries/tasks that you need to do
- How dense are the graphs?
 - Denser graphs easier to compress, but most practical graphs are sparse
Clique Partitions and Graph Compression

- Feder and Motwani; STOC 1991
- Based on partitioning the edges into complete bipartite graphs
- Commonly denoted $K_{n,m}$: n nodes completely connected to m nodes on the other side
- Can replace the mn edges with $m + n$ edges (by adding a special node)
 - They replace the mn edges with a tree over those nodes, but their goal is different
- Problem NP-Hard; but can be approximated for "dense graphs"
 - Social networks or Web graphs are actually quite sparse
- Can solve many standard graph algorithms efficiently (matchings, connectivity etc)
Clique Partitions and Graph Compression

- Illustrative figure (from Buehrer et al.)

![Figure 1: A bipartite graph compressed to a virtual node, removing 19/30 shared edges.](image)

Figure 1: A bipartite graph compressed to a virtual node, removing 19/30 shared edges.
Compact Representations of Separable Graphs

- Blandford et al.; SODA 2003
- Based on existence of small separators
 - Several classes of graphs are known to have $O(n^c)$ size separators, $c < 1$
- Basic idea: Identify separator, split the graph, recurse
 - At each step, re-label the nodes
 - Most edges will be between nodes that are close to each other in the numbering
- Some connections to the basic idea behind INDSEP
A Scalable Pattern Mining Approach to Web Graph Compression with Communities

Based on frequent itemset mining

- Identify groups of nodes that share the same outgoing links
- Compress by replacing with a virtual node that points to those targets

Quite similar to Feder and Motwani’s work

- Paper not cited

Discuss how PageRank can be computed without decompressing
Randall et al; Data Compression Conference 2001

(1) Most hyperlinks are intra-source
(2) Many nodes (pages) share outgoing edges (neighborhoods)

Can achieve < 6 bits per link

Can still compute strongly connected components or run HITS efficiently
The Link Database

- **Link1**: 32 bits per link, can only store 100 million webpage in 8GB Memory
 - Not enough
 - Disk-based methods not appropriate – too slow

- **Link2**: Compress each adjacency list locally
 - Most links intra-host; can compress significantly
 - Called "gap-coding": delta compression

- **Link3**: Compress an adjacency list using
 - A pointer to a previous adjacency list + additions - deletions
 - High decompression times: must limit to small "chains"
WebGraph Framework

- Boldi and Vigna; DCC 2004, WWW 2004
- Exploit:
 - Locality: links are mostly intra-host
 - Similarity: pages close to each other have common neighborhoods
- Could compress 118M nodes, 1G links in 3.08 bits per link
- They also developed a new coding scheme (in the DCC paper)
 - Suitable for compressing integers with a power law distribution
On Compressing Social Networks

- Chierichetti et al.; KDD 2009
- Follows on from Boldi and Vigna’s work on compressing Web graphs
- Key idea: exploiting commonalities between neighborhoods + lexicographic ordering
- The latter doesn’t work for social networks – no natural order
 - Must come up with an appropriate ordering
 - Problems NP-Hard
 - Use an approach based on Shingles (*signatures*)
 - Aside: Shingles are useful as signatures of sets in many other domains
Representing Web Graphs

- Raghavan and Garcia-Molina; ICDE 2003
- Focus on somewhat more expressive queries, over small subgraphs

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Main graph operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Generate a list of universities that Stanford researchers working on Mobile networking refer to and collaborate with. (Analysis 1 in Section 1).</td>
<td>Subset of the out-neighborhood of a set of pages</td>
</tr>
<tr>
<td>2</td>
<td>Compute the relative popularity of three different comic strips among students at Stanford University. (Analysis 2 in Section 1).</td>
<td>Count number of links between 3 different pairs of sets of pages</td>
</tr>
<tr>
<td>3</td>
<td>Compute the Kleinberg base set [10] for S, where S is the set of top 100 pages (in order of PageRank) that contain the phrase 'Internet censorship'.</td>
<td>Union of out-neighborhood and in-neighborhood of a set of pages</td>
</tr>
<tr>
<td>4</td>
<td>Identify the 10 most popular pages on Quantum cryptography at each of the following four universities - Stanford, MIT, Caltech, and Berkeley. Popularity of a page is measured by the number of incoming links from pages located outside the domain to which the page belongs.</td>
<td>In-neighborhood for four different sets of pages</td>
</tr>
<tr>
<td>5</td>
<td>Suppose S is the set of pages in the repository that contain the phrase Computer music synthesis. Rank each page in S by the number of incoming links from other pages in S. Output the top ranked 10 .edu pages in S.</td>
<td>Computation of graph induced by a set of pages</td>
</tr>
<tr>
<td>6</td>
<td>Suppose $S1$ is the set of Stanford pages (i.e., pages in stanford.edu) that contain the phrase Optical Interferometry and $S2$ is the set of Berkeley pages (i.e., pages in berkeley.edu) that contain the same phrase. Let R be the set of pages (not in stanford.edu and berkeley.edu) that are pointed to by at least one page in $S1$ and one page in $S2$. Rank each page in R by the number of incoming links from $S1$ and $S2$ and output R in descending order by rank.</td>
<td>Intersection of out-neighborhoods of two different sets of pages</td>
</tr>
</tbody>
</table>

Table 2. Some of the queries used in the experiments
Hierarchical index structure

Figure 2. S-Node representation of a Web graph
Key question: How to do the partitioning?
- Would prefer to have queries be local, and also few inter partition edges
- Several heuristics developed based on commonalities in adjacency lists, domains etc.

Need to maintain a mapping between original node labels and new node ids
Navlakha et al.; SIGMOD 2008

Similar to the previous work

Compress a graph as:
- A graph over supernodes
- A “correction” graph

Present both exact and approximate algorithms

No discussion of querying
Neighbor Query Friendly Compression of Social Networks

- Maserrat, Pei; KDD 2010
- Store the Eulerian path directly if one exists
- If not, use a generalization to Eulerian path
- No edges need to be stored explicitly
- Can answer both in- and out-neighbor queries efficiently
Adler and Mitzenmacher: based on finding nodes with similar neighborhoods

Randall: lexicographic ordering of URLs

Boldi and Vigna: exploit lexicographic ordering + similar neighborhoods

Raghavan and Garcia-Molina: decomposed Web graph into hierarchical structure

Buehrer and Chelapilla: frequent item-set mining to mine complete bipartite graphs