Overview
- Grading etc.
- Motivation
- What this class is about, What we will cover
Overview

- Grading etc.
- Motivation
- What this class is about, What we will cover

Course Website

Course Forum

“Register” → Go to “User CP” → join group “CMSC 828E Fall 2010”

We will use this for news, discussions, and for posting paper critiques
Overview

- Grading etc.
- Motivation
- What this class is about, What we will cover

Course Website

Course Forum

"Register" → Go to "User CP" → join group "CMSC 828E Fall 2010"

We will use this for news, discussions, and for posting paper critiques

Couple of things

- No laptops
- Typically won’t use detailed slides
Overview

- We will cover:
 - Probabilistic Databases
 - Graph Databases
 - Large-scale, Cloud-based Analytics (somewhat)

- Prerequisite: CMSC 424
 - Some familiarity with databases is required
 - Class notes of 424 and 724 off of my webpage
Overview

- We will cover:
 - Probabilistic Databases
 - Graph Databases
 - Large-scale, Cloud-based Analytics (somewhat)

- Prerequisite: CMSC 424
 - Some familiarity with databases is required
 - Class notes of 424 and 724 off of my webpage

- Grading:
 - A class project (40%)
 - Take-home Exams (40%)
 - Paper critiques + class participation (20%)
 - Critiques mandatory before the class
Motivation

Why are these problems interesting?
Relational Databases: Overview

- Focusing on storage and query processing aspects
- Ignoring “transactions”

Query 1:
```
select *
from R, S, T
where R.b = S.b and S.c = T.c
```

Query 2:
```
select sum(a) as suma
from R
where R.b = 60
```

Other types of queries: Ranking/Top-k, Nearest Neighbor, Keyword Search etc...

Other types of commands: Create tables, insert tuples, delete tuples etc...

Statement Parser

Queries

Inserts/Deletes

Query Optimizer

Query Processor

Execution Algorithms

Index on R.b
Relation R
(10, 10, 10)
...
...
...

Index on R.a

Index on S.b
Relation S
(10, 10, 10)
...
...
...

...
Some key advantages of RDBMS

- **Clean data model**: tables and operations on tables that return tables
- “Data Independence”: user doesn’t have to worry about how the data is stored, where
- **Declarative interfaces**
 - SQL query language: easy to understand, low learning and usage curve
 - Visual interfaces
- **Nice abstractions that enable very good engineering**
 - Modular structure (at least the query processor)
 - Each operation heavily optimized
 - Query optimization technology a great success
 - Indexing techniques developed for many data and query types
Motivation 1: Uncertainty

- Relational databases assume “exact” data
- Increasingly breaking down
- “Sensor” data
 - Automated sensing devices are becoming ubiquitous
 - e.g., environment monitoring sensors, GPS, RFID, vital signs (BP, heart rate)...
 - Often have errors for various reasons
 - Communication failures
 - Hardware limitations (can’t measure things precisely)
 - Software or hardware failures
 - Often much error correction on the device itself
- But the end result still has noise/uncertainty
Motivation 1: Uncertainty

- Relational databases assume “exact” data
- Increasingly breaking down

Data integration

- Task of combining data from multiple sources
- Many sources of uncertainties and errors
 - Would like to model trust and reputation of the sources
 - Often the “mapping” is done in an automated fashion
- See this chapter for more details

Information extraction

- Task of automatically extracting structured information from natural language text
- Extraction process rarely precise
- e.g., 5-2703 can be a phone number, or an account number
Motivation 1: Uncertainty

- Relational databases assume “exact” data
- Increasingly breaking down
- Increasing use of machine learning techniques and predictive models
 - Many classifiers provide probabilities of belonging to different classes
 - May use predictive models for, say, stock market
- Scientific datasets
 - Experimental data or observation data often imprecise (at best, incomplete)
- Data may be exact, but queries may not be
 - inst-name like “UMD” (does this match “Univ of MD” ?)
 - Common in Information Retrieval
Types of uncertainty

Caption: Even if the sensor web data sources were to publish data using intuitive well-defined interfaces, the complex and semantically disparate measures of data quality and uncertainty typically associated with it make sensor data fusion and aggregation a challenging task.
Types of uncertainty

- “Nulls” (very interesting early work on this)
- More generally, missing values/incomplete databases
Types of uncertainty

- “Nulls” (very interesting early work on this)
- More generally, missing values/incomplete databases
- Existence uncertainty: Tuples may or may not exist
 - Can be modeled logically, probabilities, fuzzy logic etc. . .
Types of uncertainty

- “Nulls” (very interesting early work on this)
- More generally, missing values/incomplete databases
- Existence uncertainty: Tuples may or may not exist
 - Can be modeled logically, probabilities, fuzzy logic etc. . .
- Attribute values are uncertain
 - I saw a car, but not sure of the color
 - Sensor values have “noise” in them
Types of uncertainty

- “Nulls” (very interesting early work on this)
- More generally, missing values/incomplete databases
- Existence uncertainty: Tuples may or may not exist
 - Can be modeled logically, probabilities, fuzzy logic etc.
- Attribute values are uncertain
 - I saw a car, but not sure of the color
 - Sensor values have “noise” in them
- Approximations/Summarization
- Confidence/Trust/Quality
- “Correlations”
 - Either this tuple exists or that
 - If this attribute is 1, then that attribute is 2
How to deal with Uncertainty?

- **Approach 1**: “Clean” the data
 - Remove noise; Thresholding (e.g., take majority opinion)
 - More up-front work, but standard DB operations afterwards

- **Approach 2**: Keep the uncertainty information and reason with it
 - Less up-front work
 - Query processing is much harder (next class)

Why do Approach 2?
- Smoother results; more flexibility; better decisions
 - Throwing away information can never be a good idea
- Can corroborate information from multiple sources

We mostly process information in that manner.
New types of tasks

- We may want to do more than SQL queries on uncertain data
- Inference types of queries
 - “If my prices were 10% higher, what would have been my profit last year?”
 - See the very interesting work on the MCDB project
New types of tasks

- We may want to do more than SQL queries on uncertain data
- Inference types of queries
 - “If my prices were 10% higher, what would have been my profit last year?”
 - See the very interesting work on the MCDB project
- Active Learning
 - Try to resolve uncertainty as you go along by asking questions, getting help from an expert
New types of tasks

- We may want to do more than SQL queries on uncertain data
- Inference types of queries
 - “If my prices were 10% higher, what would have been my profit last year?”
 - See the very interesting work on the MCDB project
- Active Learning
 - Try to resolve uncertainty as you go along by asking questions, getting help from an expert
- Budgeted queries
 - Given a budget for resolving uncertainty, do the best you can for a query
 - Some deep recent work on this and related problems
Graph-structured data is everywhere

- Web; Social networks
- Semi-structured data (XML)
- Computer Networks
- Biological data (protein-protein interaction networks);
- Chemical data analysis
Why relational databases won’t work?

- Have two tables: one for nodes, one for edges
 - More if there are different types of nodes or edges
 - Doesn’t work

Queries and tasks do not look like SQL at all

Subgraph pattern queries (also, approximate searching)

Keyword search; Proximity search; Reachability queries

“Count the number of triangles?”

Computation of several interesting statistics requires that

Do “entity resolution”

i.e., decide if two nodes refer to the same entity

e.g., authors in citation networks; email addresses in social networks

Compute “PageRank”

e.g., to decide important nodes

How does an outbreak spread in this graph?
Why relational databases won’t work?

- Have two tables: one for nodes, one for edges
 - More if there are different types of nodes or edges
 - Doesn’t work

- Queries and tasks do not look like SQL at all
 - Subgraph pattern queries (also, approximate searching)
 - Keyword search; Proximity search; Reachability queries
 - “Count the number of triangles?”
 - Computation of several interesting statistics requires that
 - Do “entity resolution”
 - i.e., decide if two nodes refer to the same entity
 - e.g., authors in citation networks; email addresses in social networks
 - Compute “PageRank”
 - e.g., to decide important nodes

- How does an outbreak spread in this graph?
Why relational databases won’t work?

- Storage and indexing techniques must be reconsidered
 - Web graphs and social network graphs can be highly compressed using specialized techniques
 - New indexing techniques needed
 - Different considerations if we have:
 - one very large graph (> 100 million nodes)
 - vs millions of small graphs

- New declarative interfaces needed
 - e.g., for specifying complex tasks like entity resolution

- Such networks are often highly dynamic
 - How to do “continuous” query processing over such data
Some of the challenges we will focus on

- **Uncertainty**
 - Edges may or may not exist
 - Probability distributions over attribute values
 - Two nodes may be identical with a probability (not considered before)

- **Temporal and dynamics issues**
 - An edge may exist for a given time duration
 - Rapidly changing graphs
 - E.g. how to do pattern detection in presence of streaming graph data?
Motivation 3: Cloud Computing

- Data is too large to be processed on a single disk
- Cloud computing has emerged as the key technology to enable large-scale analytics
- Many open challenges
 - Graph data is not typically amenable to distributed processing
 - How to represent complex analysis tasks declaratively?
- We will cover this late, but a good topic for class projects
Format of the class
- Assigned paper readings
- Critiques must be posted on the forum before the class

Class Projects
- Major component of the grade
- Individual or Group
- Intermediate “literature survey” deadline in mid-October
- I will provide suggestions; your own projects welcome
Stuff

- Format of the class
 - Assigned paper readings
 - Critiques must be posted on the forum before the class

- Class Projects
 - Major component of the grade
 - Individual or Group
 - Intermediate “literature survey” deadline in mid-October
 - I will provide suggestions; your own projects welcome

- My absences
 - Gone a little over 2 weeks in September
 - Those classes would be covered by students
 - We also miss four other classes (labor day, thanksgiving, two colloquium talks)
 - Instead of rescheduling, prefer to go longer in other classes (by 15 to 30 mins)
Next class . . .

- Probabilistic Databases
 - Reading: On the webpage