CMSC 132: Object-Oriented Programming II

Collection Abstractions & Java Collections

Department of Computer Science
University of Maryland, College Park
Programs represent and manipulate abstractions (chunks of information)

- Examples: roster of students, deck of cards, a Tetromino

One of the most universal abstractions is a collection

- Represents an aggregation of multiple objects
- Plus, perhaps, a relation between elements
- Examples: list, set, ordered set, map, array, tree
- Supporting different operations
Data Structures

Data structure
- A way of representing & storing information

Choice of data structure affects
- Abstractions supported
- Amount of storage required
- Which operations can be efficiently performed

Collections may be implemented using many different data structures
Graph Abstractions

- Many-to-many relationship between elements
 - Each element has multiple predecessors
 - Each element has multiple successors
Graph abstractions

- **Undirected graph**
 - Undirected edges

- **Directed graph**
 - Directed edges

- **Directed acyclic graph (DAG)**
 - Directed edges, no cycles
Tree abstractions

- One-to-many relationship between elements
 - Each element has **unique** predecessor
 - Each element has **multiple** successors
Tree Abstractions

- **Forest**
 - DAG, but each node has at most one edge to it (from a parent)

- **Tree**
 - Forest with only one node (the root) that doesn’t have a parent

- **Binary Tree**
 - A tree where each node has at most 2 children
Sequence Abstractions

- One-to-one relationship between elements
 - Each element has unique predecessor
 - Each element has unique successor
Sequences or Ordered Collections

List

- A sequence of elements
- The user of this interface has precise control over where in the list each element is inserted.
- The user can access elements by their integer index (position in the list), and search for elements in the list.
Limited Sequences

Queue
- Can add only at the tail
- Can only access or remove at the head
- First-in, First-out (FIFO)

Stack
- Can add only at the top
- Can only access or remove at the top
- Last-in, First-out (LIFO)

Deque: double ended queue
- Can add, access or remove at either end
Set Data Structures

- No relationship between elements
 - Elements have no predecessor / successor
 - Only one copy of element allowed in set
Set Abstractions

- **Set**
 - E.g., \{Mitt, Mike, John, Ron\}

- **Map**
 - Like a set, but each element in the set is mapped to a value
 - E.g., \{Mitt=280, Mike=243, John=843, Ron=14\}

- **SortedSet**
 - Elements must be comparable, or a comparator must be provided
 - Elements can be accessed in order
Java provides several interfaces and classes for manipulating & organizing data

Example: List, Set, Map interfaces

Java Collection Framework consists of

- Interfaces
 - Abstract data types
- Implementations
 - Reusable data structures
- Algorithms
 - Reusable functionality
Collection Interface

Core operations
- Add element
- Remove element
- Determine size (# of elements)
- Iterate through all elements

Additional operations supported by some collections
- Find first element
- Find kth element
- Find largest element
- Sort elements
Collection vs. Collections

Collection

- Interface
- Root interface of collection hierarchy
- Methods: add(), contains(), remove(), size()

Collections

- Class
- Contains static methods that operate on collections
- Methods: shuffle(), copy(), list()