CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Markov Chains, and Random Text Generation

Department of Computer Science
University of Maryland, College Park
Random Text Generation Project

• Goal
 • Read in text
 • Generate similar semi-random text

• Approach
 1. Build DenseBag to store word frequencies
 2. Use DenseBag to build Markov chain
 3. Use Markov chain to generate semi-random text
DenseBag

• Properties
 • Like a Set
 • But can contain duplicates

• Examples
 • \{ 1, 3, 1, 1, 3, 5 \}
 • \{ 1, 1, 1, 3, 3, 5 \}
 • \{ three 1’s, two 3’s, one 5 \}
 • All represent same DenseBag
DenseBag^E Operations

- **Operations supported**
 - Set^E getUniqueElements()
 - int getCount(E e)
 - E choose(Random r)

- **Examples**
 - Given DenseBag<Integer> x = { 1, 1, 1, 3, 3, 5 };
 - x. getUniqueElements() → { 1, 3, 5 }
 - x. getCount(1) → 3
 - x. choose(r) → 1 (50%), 3 (33%) or 5 (17%)
DenseBag\(<E>\) Operations

• Efficiency
 • Most operations should take O(1)
 • If using hashing
 • choose(Random r) may take O(|unique items|)

• Iterator
 • Iterates over all elements
 • Order is undefined
Markov Chain

• Definition
 • A series of states with the Markov property
 • Where probability of future states depends only upon the present state and not on any past states
 • Example: Probability of X going to S_1 or S_2 is independent of whether P_1 or P_2 originally moved to X

• Used in
 • Statistical machine learning (artificial intelligence)
Markov Chain For Text

• Application of Markov chain
 • Represent probability of word following each word
 • Based on actual frequencies found in text

• Example
 • In the text “a b a c a b a b”
 • Word a is followed by b (75%) or c (25%)
 • Markov chain for words following a
Markov Chain For Text

• Example
 • For the text “a b a c a b a b”
 • Markov chain for entire text

![Markov Chain Diagram]

- States: a, b, c, end
- Transitions:
 - Start to a: 100%
 - a to b: 75%
 - a to c: 25%
 - b to end: 33%
 - c to end: 67%
Higher-Order Markov Chain

• Application
 • Can represent probability of word following each group of words (order-k for k consecutive words)

• Example
 • In the text “a b a c a b a b”
 • Words b a are followed by b (50%) or c (50%)
 • Represent with following Markov chain

![Markov Chain Diagram]

- b -> a -> b (50%)
- b -> c (50%)
- a -> b (50%)
- a -> c (50%)
DenseBag → Markov Chain

- DenseBag can represent state in Markov chain
 - Contains output in proportion to probability

- Example
 - Markov state transitions

```
DenseBag
a, b, b, c
```

```
75% 25%
```

```
a
  b
  c
```

```
a
  {b, b, b, c}
```
Markov Text Generation

• Approach (for order-n Markov text)
 1. Generate higher-order Markov chains
 • Analyze “training” text(s)
 2. Represent Markov chains as DenseBags
 3. Connect DenseBags
 • To build probabilistic transition table
 4. Use transition table to generate text
Handling Start & End of Text

1. Use empty string(s)
 - Start text generation with “”
 - End text if “” generated
 - “” → “a”
 - “”,“” → “”,“a”
 - “a” → “”

2. Augment input with <Start> & <End> markers
 - “a b a c” → “<Start> a b a c <End>”
 - Start text generation with <Start>
 - End text if <End> generated