CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park
Algorithm Efficiency

• Efficiency
 • Amount of resources used by algorithm
 • Time, space
• Measuring efficiency
 • Benchmarking
 • Approach
 • Pick some desired inputs
 • Actually run implementation of algorithm
 • Measure time & space needed
 • Asymptotic analysis
Benchmarking

Advantages
- Precise information for given configuration
 - Implementation, hardware, inputs

Disadvantages
- Affected by configuration
 - Data sets (often too small)
 - Dataset that was the right size 3 years ago is likely too small now
 - Hardware
 - Software
- Affected by special cases (biased inputs)
- Does not measure *intrinsic* efficiency
Asymptotic Analysis

• Approach
 • Mathematically analyze efficiency
 • Calculate time as function of input size n
 • $T \approx O(f(n))$
 • T is on the order of $f(n)$
 • “Big O” notation

• Advantages
 • Measures intrinsic efficiency
 • Dominates efficiency for large input sizes
 • Programming language, compiler, processor irrelevant
Search Example

- Number guessing game
 - Pick a number between 1…n
 - Guess a number
 - Answer “correct”, “too high”, “too low”
 - Repeat guesses until correct number guessed
Linear Search Algorithm

- Algorithm
 - Guess number = 1
 - If incorrect, increment guess by 1
 - Repeat until correct
- Example
 - Given number between 1…100
 - Pick 20
 - Guess sequence = 1, 2, 3, 4 … 20
 - Required 20 guesses
Linear Search Algorithm

• Analysis of # of guesses needed for 1…n
 • If number = 1, requires 1 guess
 • If number = n, requires n guesses
 • On average, needs n/2 guesses
 • Time = O(n) = Linear time
Binary Search Algorithm

- Algorithm
 - Set low and high to be lowest and highest possible value
 - Guess middle = \((low+high)/2\)
 - If too large, set high = middle-1
 - If too small, set low = middle+1
 - Repeat until guess correct
Binary Search Algorithm

• Example
 • Given number between 1…100
 • Secret number we are trying is find is 20
 • Guesses
 • low = 1, high = 100, guess 50, Answer = too large
 • low = 1, high = 49, guess 25, Answer = too large
 • low = 1, high = 24, guess 12, Answer = too small
 • low = 13, high = 24, guess 18, Answer = too small
 • low = 19, high = 24, guess 21, Answer = too large
 • low = 19, high = 20, guess 19, Answer = too small
 • low = 20, high = 20, guess 20, Answer = correct
 • Required 7 guesses
Binary Search Algorithm

- Analysis of # of guesses needed for 1…n
 - If number = n/2, requires 1 guess
 - If number = 1, requires $\log_2(n)$ guesses
 - If number = n, requires $\log_2(n)$ guesses
 - On average, needs $\log_2(n)$ guesses
 - Time = $O(\log_2(n)) = O(\log(n)) = \text{Log time}$
Search Comparison

• For number between 1…100
 • Simple algorithm = 50 steps
 • Binary search algorithm = $\log_2(n) = 7$ steps

• For number between 1…100,000
 • Simple algorithm = 50,000 steps
 • Binary search algorithm = $\log_2(n)$ (about 17 steps)

• Binary search is much more efficient!
Asymptotic Complexity

• Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/2</td>
<td>4n+3</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - n/2 and 4n+3 behave similarly
 - Run time roughly doubles as input size doubles
 - Run time increases linearly with input size
- For large values of n
 - Time(2n) / Time(n) approaches exactly 2
- Both are O(n) programs
Asymptotic Complexity

- Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log₂(n)</td>
<td>5 * log₂(n) + 3</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>9</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
Asymptotic Complexity

• Comparing two functions
 • $\log_2(n)$ and $5 \cdot \log_2(n) + 3$ behave similarly
 • Run time roughly increases by constant as input size doubles
 • Run time increases logarithmically with input size
• For large values of n
 • $\text{Time}(2n) - \text{Time}(n)$ approaches constant
 • Base of logarithm does not matter
 • Simply a multiplicative factor
 \[
 \log_a N = (\log_b N) / (\log_b a)
 \]
 • Both are $O(\log(n))$ programs
Asymptotic Complexity

- Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

• Comparing two functions
 • \(n^2 \) and \(2n^2 + 8 \) behave similarly
 • Run time roughly increases by 4 as input size doubles
 • Run time increases quadratically with input size
• For large values of \(n \)
 • \(\frac{\text{Time}(2n)}{\text{Time}(n)} \) approaches 4
• Both are \(O(n^2) \) programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs
Formal Definition of Big-O

- Function $f(n)$ is $O(g(n))$ if
 - For some positive constants M, N_0
 - $M \times g(n) \geq f(n)$, for all $n \geq N_0$
- Intuitively
 - For some coefficient M & all data sizes $\geq N_0$
 - $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

• $5n + 1000 \Rightarrow O(n)$
 • Select $M = 6, N_0 = 1000$
 • For $n \geq 1000$
 • $6n \geq 5n + 1000$ is always true
 • Example \Rightarrow for $n = 1000$
 • $6000 \geq 5000 + 1000$
Big-O Examples

• $2n^2 + 10n + 1000 \Rightarrow O(n^2)$
 • Select $M = 4$, $N_0 = 100$
 • For $n \geq 100$
 • $4n^2 \geq 2n^2 + 10n + 1000$ is always true
• Example \Rightarrow for $n = 100$
 • $40000 \geq 20000 + 1000 + 1000$
Observations

- For large values of n
 - Any $O(\log(n))$ algorithm is faster than $O(n)$
 - Any $O(n)$ algorithm is faster than $O(n^2)$
- Asymptotic complexity is fundamental measure of efficiency
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>$O(\log(n))$</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>$O(n \log(n))$</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>$O(n^k)$</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>$O(k^n)$</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
<tr>
<td>$O(n!)$</td>
<td>Factorial</td>
<td>Brute-force search TSP</td>
</tr>
<tr>
<td>$O(n^n)$</td>
<td>N to the N</td>
<td></td>
</tr>
</tbody>
</table>

From smallest to largest, for size n, constant $k > 1$.
Complexity Category Example

of Solution Steps vs Problem Size

- 2^n
- n^2
- $n \log(n)$

Graph showing the growth of the number of solution steps with problem size.
Complexity Category Example

<table>
<thead>
<tr>
<th>Problem Size</th>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2^2</td>
</tr>
<tr>
<td>3</td>
<td>3^2</td>
</tr>
<tr>
<td>4</td>
<td>4^2</td>
</tr>
<tr>
<td>5</td>
<td>5^2</td>
</tr>
<tr>
<td>6</td>
<td>6^2</td>
</tr>
<tr>
<td>7</td>
<td>7^2</td>
</tr>
<tr>
<td>8</td>
<td>8^2</td>
</tr>
</tbody>
</table>

- 2^2: Quadratic (n^2)
- 3^2: Quadratic (n^2)
- 4^2: Quadratic (n^2)
- 5^2: Quadratic (n^2)
- 6^2: Quadratic (n^2)
- 7^2: Quadratic (n^2)
- 8^2: Quadratic (n^2)
Calculating Asymptotic Complexity

• As \(n \) increases
 • Highest complexity term dominates
 • Can ignore lower complexity terms

• Examples
 • \(2n + 100 \) \(\Rightarrow O(n) \)
 • \(10n + n\log(n) \) \(\Rightarrow O(n\log(n)) \)
 • \(100n + \frac{1}{2}n^2 \) \(\Rightarrow O(n^2) \)
 • \(100n^2 + n^3 \) \(\Rightarrow O(n^3) \)
 • \(\frac{1}{100}2^n + 100n^4 \) \(\Rightarrow O(2^n) \)
Complexity Examples

- $2n + 100 \Rightarrow O(n)$
Complexity Examples

- \(\frac{1}{2} n \log(n) + 10 n \Rightarrow O(n\log(n)) \)
Complexity Examples

• $\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2)$

![Graph showing complexity examples](image-url)
Complexity Examples

- $1/100 \ 2^n + 100 \ n^4 \Rightarrow O(2^n)$
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior

- Types of analysis
 - Best case
 - Worst case
 - Average case
 - Amortized
Types of Case Analysis (Best/Worst)

- **Best case**
 - Smallest number of steps required
 - Not very useful
 - Example \Rightarrow Find item in first place checked

- **Worst case**
 - Largest number of steps required
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example \Rightarrow Find item in last place checked
Quicksort Example

• Quicksort
 • One of the fastest comparison sorts
 • Frequently used in practice

• Quicksort algorithm
 • Pick pivot value from list
 • Partition list into values smaller & bigger than pivot
 • Recursively sort both lists

• Quicksort properties
 • Average case = $O(n\log(n))$
 • Worst case = $O(n^2)$
 • Pivot \approx smallest / largest value in list
 • Picking from front of nearly sorted list

• Can avoid worst-case behavior
 • Select random pivot value
Types of Case Analysis (Average)

- Average case analysis
 - Number of steps required for “typical” case
 - Most useful metric in practice
 - Different approaches: average case, expected case

- Average case
 - Average over all possible inputs
 - Assumes all inputs have the same probability
 - Example
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

- Expected case
 - Weighted average over all possible inputs
 - Based on probability of each input
 - Example
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Amortized Analysis

• **Approach**
 - Applies to worst-case *sequences* of operations
 - Finds average running time per operation
 - Example
 - Normal case = 10 steps
 - Every 10th case may require 20 steps
 - Amortized time = 11 steps

• **Assumptions**
 - Can predict possible sequence of operations
 - Know when worst-case operations are needed
 - Does not require knowledge of probability
 - By using amortized analysis we can show the best way to grow an array is by doubling its size (rather than increasing by adding one entry at a time)