CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Algorithmic Complexity II

Department of Computer Science
University of Maryland, College Park
Analyzing Algorithms

• Goal
 • Find asymptotic complexity of algorithm

• Approach
 • Ignore less frequently executed parts of algorithm
 • Find critical section of algorithm
 • Determine how many times critical section is executed as function of problem size
Critical Section of Algorithm

- Heart of algorithm
- Dominates overall execution time

Characteristics
- Operation central to functioning of program
- Contained inside deeply nested loops
- Executed as often as any other part of algorithm

Sources
- Loops
- Recursion
Critical Section Example 1

- Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++) {
 3. B
 4. }
 5. C

- Code execution
 - A \(\Rightarrow\) once
 - B \(\Rightarrow\) n times
 - C \(\Rightarrow\) once

- Time \(\Rightarrow\) 1 + n + 1 = O(n)
Critical Section Example 2

- Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++) {
 3. B
 4. for (int j = 0; j < n; j++) {
 5. C
 6. }
 7. }
 8. D

- Code execution
 - $A \Rightarrow$ once
 - $B \Rightarrow n$ times
 - $C \Rightarrow n^2$ times
 - $D \Rightarrow$ once

- Time $\Rightarrow 1 + n + n^2 + 1 = O(n^2)$
Critical Section Example 3

- Code (for input size n)
 1. A
 2. for (int $i = 0; i < n; i++$) {
 3. for (int $j = i+1; j < n; j++)$ {
 4. B
 5. }
 6. }

- Code execution
 - $A \Rightarrow$ once
 - $B \Rightarrow \frac{1}{2} n (n-1)$ times

- Time $\Rightarrow 1 + \frac{1}{2} n^2 = O(n^2)$
Critical Section Example 4

- **Code (for input size n)**

  ```java
  1. A
  2. for (int i = 0; i < n; i++) {
  3.     for (int j = 0; j < 10000; j++) {
  4.         B
  5.     }
  6. }
  
  - Code execution
  - A ⇒ once
  - B ⇒ 10000 n times
  
  - Time ⇒ 1 + 10000 n = O(n)
Critical Section Example 5

- Code (for input size $n$)
  1. for (int $i = 0; i < n; i++$) {
  2.     for (int $j = 0; j < n; j++$)
  3.         A
  4.     for (int $i = 0; i < n; i++$)
  5.         for (int $j = 0; j < n; j++$)
  6.         B

- Code execution
  - $A \Rightarrow n^2$ times
  - $B \Rightarrow n^2$ times

- Time $\Rightarrow n^2 + n^2 = O(n^2)$
Critical Section Example 6

- Code (for input size n)
  1. \( i = 1 \)
  2. while (\( i < n \)) {
  3.     A
  4.     \( i = 2 \times i \)
  5.     B
  critical section

- Code execution
  - A \( \Rightarrow \log(n) \) times
  - B \( \Rightarrow 1 \) times

- Time \( \Rightarrow \log(n) + 1 = O(\log(n)) \)
Critical Section Example 7

- Code (for input size $n$)
  1. DoWork (int $n$)
  2. if ($n == 1$)
  3.  A
  4.  else {
  5.    DoWork($n/2$)
  6.    DoWork($n/2$)
  7.  }

- Code execution
  - $A \Rightarrow 1$ times
  - $\text{DoWork}(n/2) \Rightarrow 2$ times

- $\text{Time}(1) \Rightarrow 1$  \quad $\text{Time}(n) = 2 \times \text{Time}(n/2) + 1$
Recursive Algorithms

• Definition
  • An algorithm that calls itself

• Components of a recursive algorithm
  1. Base cases
     • Computation with no recursion
  2. Recursive cases
     • Recursive calls
     • Combining recursive results
Recursive Algorithm Example

- Code (for input size n)
  1. DoWork (int n)
  2. if (n == 1)
  3. A
  4. else {
  5. DoWork(n/2)
  6. DoWork(n/2)
  7. }

[Diagram showing base case and recursive cases]
Comparing Complexity

- Compare two algorithms
  - $f(n)$, $g(n)$
- Determine which increases at faster rate
  - As problem size $n$ increases
- Can compare ratio
  - If $\infty$, $f()$ is larger
  - If 0, $g()$ is larger
  - If constant, then same complexity

$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$
Complexity Comparison Examples

• $\log(n)$ vs. $n^{\frac{1}{2}}$

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \rightarrow \quad \lim_{n \to \infty} \frac{\log(n)}{n^{\frac{1}{2}}} \quad \rightarrow \quad 0
\]

• $1.001^n$ vs. $n^{1000}$

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \rightarrow \quad \lim_{n \to \infty} \frac{1.001^n}{n^{1000}} \quad \rightarrow \quad ??
\]

Not clear, use L’Hopital’s Rule
Additional Complexity Measures

• Upper bound
  • Big-O \( \Rightarrow O(\ldots) \)
  • Represents upper bound on # steps

• Lower bound
  • Big-Omega \( \Rightarrow \Omega(\ldots) \)
  • Represents lower bound on # steps

• Combined bound
  • Big-Theta \( \Rightarrow \Theta(\ldots) \)
  • Represents combined upper/lower bound on # steps
  • Best possible asymptotic solution
2D Matrix Multiplication Example

• Problem
  • \( C = A * B \)

• Lower bound
  • \( \Omega(n^2) \) Required to examine 2D matrix

• Upper bounds
  • \( O(n^3) \) Basic algorithm
  • \( O(n^{2.807}) \) Strassen’s algorithm (1969)
  • \( O(n^{2.376}) \) Coppersmith & Winograd (1987)

• Improvements still possible (open problem)
  • Since upper & lower bounds do not match