Recursive Algorithms

Department of Computer Science
University of Maryland, College Park
Recursion

• Recursion is a strategy for solving problems
 • A procedure that calls itself

Approach

• If (problem instance is simple / trivial)
 • Solve it directly

• Else
 • Simplify problem instance into smaller instance(s) of the original problem
 • Solve smaller instance using same algorithm
 • Combine solution(s) to solve original problem
Recursive Algorithm Format

1. Base case
 - Solve small problem directly

2. Recursive step
 - Simplify problem into smaller subproblem(s)
 - Recursively apply algorithm to subproblem(s)
 - Calculate overall solution
Example – Factorial

• Factorial definition
 • \(n! = n \times (n-1) \times (n-2) \times (n-3) \times \ldots \times 3 \times 2 \times 1 \)
 • \(0! = 1 \)

• To calculate factorial of \(n \)
 • Base case
 • If \(n = 0 \), return 1
 • Recursive step
 • Calculate the factorial of \(n-1 \)
 • Return \(n \times \) (the factorial of \(n-1 \))

• Code
  ```
  int fact ( int n ) {
    if ( n == 0 ) return 1; // base case
    return n * fact(n-1); // recursive step
  }
  ```
Properties

- Recursion relies on the call stack
 - State of current procedure is saved when procedure is recursively invoked
 - Every procedure invocation gets own stack space
 - Let’s draw a diagram for factorial(4)
- Any problem solvable with recursion may be solved with iteration (and vice versa)
 - Use iteration with explicit stack to store state
 - Algorithm may be simpler for one approach
Recursion vs. Iteration

- **Recursive algorithm**

```c
int fact ( int n ) {
    if ( n == 0 ) return 1;
    return n * fact(n-1);
}
```

- **Iterative algorithm**

```c
int fact ( int n ) {
    int i, res;
    res = 1;
    for (i=n; i>0; i--) {
        res = res * i;
    }
    return res;
}
```

Recursive algorithm is closer to factorial definition
Examples

• Find \(\rightarrow\) To **find** an element in an array
 • Base case
 • If array is empty, return false
 • Recursive step
 • If 1\(^{st}\) element of array is given value, return true
 • Skip 1\(^{st}\) element and **recur** on remainder of array

• Count Instances \(\rightarrow\) To **count** # of elements in an array
 • Base case
 • If array is empty, return 0
 • Recursive step
 • Skip 1\(^{st}\) element and **recur** on remainder of array
 • Add 1 to result

• Some recursive problems require an auxiliary function
 • Auxiliary function – the one that actually is recursive
• Example: ArrayExamples.java
Examples

• Let’s look at recursive solutions for a linked list
 • Find
 • Count
 • Print list
 • Print list in reverse
Recursion vs. Iteration

• Iterative algorithms
 • May be more efficient
 • No additional function calls
 • Run faster, use less memory

• Recursive algorithms
 • Higher overhead
 • Time to perform function call
 • Memory for call stack
 • May be simpler algorithm
 • Easier to understand, debug, maintain
 • Natural for backtracking searches
 • Suited for recursive data structures
 • Trees, graphs…
Making Recursion Work

• Designing a correct recursive algorithm
• Verify
 • Base case is
 • Recognized correctly
 • Solved correctly
 • Recursive case
 • Solves 1 or more simpler subproblems
 • Can calculate solution from solution(s) to subproblems
 • Makes progress toward the base case
• Uses principle of proof by induction
Proof By Induction

• Mathematical technique

• A theorem is true for all $n \geq 0$ if
 • Base case
 • Prove theorem is true for $n = 0$, and
 • Inductive step
 • Assume theorem is true for n (inductive hypothesis)
 • Prove theorem must be true for $n+1$
Types of Recursion

- Tail recursion
 - Single recursive call at end of function
 - Example
    ```c
    int factorial(int n, int partialResult) {
        if (n == 0)
            return partialResult;
        return factorial(n-1, n*partialResult);
    }
    ```

- Can easily transform to iteration (loop)
Types of Recursion

- Non-tail recursion
 - Recursive call(s) not at end of function
 - Example
    ```
    int nontail( int n ) {
      ...
      x = nontail(n-1) ;
      y = nontail(n-2) ;
      z = x + y;
      return z;
    }
    ```
 - Can transform to iteration using explicit stack
Possible Problems – Infinite Loop

• Infinite recursion
 • If recursion not applied to simpler problem

```c
int bad ( int n ) {
    if ( n == 0 ) return 1;
    return bad(n);
}
```

• Will infinite loop
• Eventually halt when runs out of (stack) memory
 • Stack overflow
Possible Problems – Efficiency

- May perform excessive computation
 - If recomputing solutions for subproblems

- Example
 - Fibonacci numbers
 - fibonacci(0) = 1
 - fibonacci(1) = 1
 - fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

- See Fibonacci.java
Possible Problems – Efficiency

- Recursive algorithm to calculate fibonacci(n)
 - If n is 0 or 1, return 1
 - Else compute fibonacci(n-1) and fibonacci(n-2)
 - Return their sum
- Simple algorithm \(\Rightarrow \) exponential time \(O(2^n) \)
 - Computes fibonacci(1) \(2^n \) times
- Can solve efficiently using
 - Iteration
 - Dynamic programming
- Will examine different algorithm strategies later…
Examples of Recursive Algorithms

• Towers of Hanoi
• Binary search
• Quicksort
• N-queens
• Fractals
Example – Towers of Hanoi

- Problem
 - Move stack of disks between pegs
 - Can only move top disk in stack
 - Only allowed to place disk on top of larger disk
Example – Towers of Hanoi

- To move a stack of \(n \) disks from peg X to Y
 - Base case
 - If \(n = 1 \), move disk from X to Y
 - Recursive step
 - Move top \(n-1 \) disks from X to 3\(^{rd}\) peg
 - Move bottom disk from X to Y
 - Move top \(n-1 \) disks from 3\(^{rd}\) peg to Y

Iterative algorithm would take much longer to describe!
N-Queens

• Goal
 • Place queens on a board such that every row and column contains one queen, but no queen can attack another queen

• Recursive approach
 • To place queens on NyN board
 • Assume you’ve already placed K queens
Fractals

• Goal
 • Construct shapes using a simple recursive definition with a natural appearance

• Properties
 • Appears similar at all scales of magnification
 • Therefore “infinitely complex”
 • Not easily described in Euclidean geometry

Mandelbrot Set