LIST STRUCTURES

Hanan Samet

Computer Science Department and Center for Automation Research and Institute for Advanced Computer Studies University of Maryland
College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu
WHAT IS A DATA STRUCTURE?

• Usually (FORTRAN programmers) use arrays

• A different column for each different class of information

• Ex: airline reservation system
 for each passenger on a specific flight:
 1. name
 2. address
 3. phone #
 4. seat #
 5. destination (on a multi-stop flight)

• Notes:
 1. not all fields contain numeric information
 2. fields need not correspond to whole computer words
 • sex is binary
 • several fields can be packed into one word
 • some fields can occupy more than one word
DIFFERENT REPRESENTATIONS FOR NUMBERS DEPENDING ON THEIR USE:

• Type
 1. BCD
 • social security number 123-45-6789
 • telephone number (123) 456-7890
 • can print character by character by shifting rather than modulo division
 2. ASCII
 3. Fielddata

• Manner of using the data may dictate the representation
 1. sometimes a dual representation – deck of cards
 2. string and numeric

• Ex: airline reservation system
 • Los Angeles → Dallas → Baltimore
 • task: find all passengers with the same destination
 • field: SAMEDEST (LINK or pointer information)

- alternatively, scan through the passenger list each time the query is posed
CHARACTER DATA

1.

2.

3.

4.

• 1 permits sharing arbitrary segments of strings (start, middle, end)

• 2 only permits sharing endings
 2 may occupy one less word than 1

• 3 only permits sharing when one string is a substring of another, or one string extends into the next string

• 4 only permits sharing a terminating substring

• 1 is superior to 2 because data and links are separate

• 3 is superior to 4
PASSENGER DATA STRUCTURE

JIM JONES
40 ELM ST. ANYTOWN, ANYSTATE 01234
(123) 456-7890
45
DALLAS
NO SMOKING

Passenger = RECORD
 Name: ^CharString;
 Addr: ^CharString;
 Phone: Integer;
 Seat: Integer;
 Destino: ^CharString;
 Fumar: Boolean;
 MVuelo: ^Passenger;
 MDestino: ^Passenger;
END;
PROBLEM: Add a passenger to flight 455 who gets off at Dallas.

First455 ≡ pointer to the first passenger on flight 455
FirstDallas ≡ pointer to the first passenger to Dallas
NewPass ≡ pointer to the new passenger.

PASCAL

1. MVuelo(NewPass)←First455
 NewPass↑.MVuelo←First455;
2. First455←NewPass;
 First455←NewPass;
3. MDestino(NewPass)←FirstDallas;
 NewPass↑.MDestino←FirstDallas;
4. FirstDallas←NewPass;
 FirstDallas←NewPass;
PROBLEM: How many passengers get off at Dallas?

1. \(n \leftarrow 0; \)
2. \(x \leftarrow \text{FirstDallas}; \)
3. if \(x = \Omega \) then HALT;
4. \(n \leftarrow n + 1; \)
5. \(x \leftarrow \text{MDestino}(x); \)
6. goto 3;

PASCAL:

\[n \leftarrow 0; \]
\[x \leftarrow \text{FirstDallas}; \]
while \(x \neq \Omega \) do
begin
 \[n \leftarrow n + 1; \]
 \[x \leftarrow x \uparrow \text{MDestino}; \]
end;

Field names: \(\text{MVuelo}, \text{MDestino} \)
Variable names: \(n, x, \text{First455}, \text{FirstDallas}, \text{NewPass} \)
Integer variable: \(n \)
Link variables: \(x, \text{First455}, \text{FirstDallas}, \text{NewPass} \)
contain addresses!
DATA STRUCTURE SELECTION

1. Will the information be used?
 - playing cards – is the card face up or face down?

2. How accessible should the information be?
 - Ex: game of Hearts
 a. how many hearts in the hand
 b. explicit ⇒ must constantly update
 c. implicit ⇒ must look at all cards

• the choice of representation is dominated by the class of operations to be performed on the data
LINEAR LIST

- Set of nodes $x[1], x[2], \ldots, x[n]$ \hspace{1cm} (n≥1)
- Principal property is that $x[k]$ is followed by $x[k+1]$
- Possible Operations:
 1. gain access to the k^{th} node
 2. insert before the k^{th} node
 3. delete the k^{th} node
 4. combine 2 or more lists
 5. split a list into 2 or more lists
 6. make a copy of a list
 7. determine the number of nodes in a list
 8. sort the elements of the list
 9. search the list for a node with a particular value

- For operations 1, 2, and 3 \hspace{1cm} $k=1$ or $k=n$ \hspace{1cm} are interesting
 1. stack: \hspace{1cm} insert and delete at the same end
 2. queue: \hspace{1cm} insert at one end
 \hspace{1cm} delete at the other end
 3. deque: \hspace{1cm} insert and delete at both ends
STACKS

- Useful for processing goals and subgoals
- Subroutines and parameter transmittal
- Some computers have stack-like instructions

Ex: Translate arithmetic expression from infix to postfix

Infix: operand operator operand operand A+B
Prefix: operator operand operand operand +AB
Postfix: operand operand operand operator AB+

Postfix ≡ ‘Polish notation’

A+B*C ⇒ ABC*+

Stack

Enter A C
Enter B B B*C
Enter C A A A+B*C

* +
 QUEUE:

Delete

FIRST
FRONT
FIFO

Insert

SECOND
THIRD
LAST
REAR

DEQUE:

Input restricted deque
Output restricted deque

Question: how would you construct a stack from a deque?
SEQUENTIAL ALLOCATION

• Easiest way to store a list in a computer is sequentially

\[
\text{LOC}(x[j+1]) = \text{LOC}(x[j]) + c
\]

node size = \(c \)

\[
\text{LOC}(x[j]) = L_0 + c \cdot j \quad \text{where} \quad L_0 = \text{LOC}(x[0])
\]

• STACK:
 1. sequential block of storage
 2. variable \(T \) (\(\equiv \) stack pointer) indicates the top of the stack
 3. \(T = 0 \) \(\Rightarrow \) stack is empty

• To enter a new value \(y \) on the stack:

\[
T \leftarrow T + 1;
\]

\[
x[T] \leftarrow y;
\]

• To remove an entry from the stack we reverse entry sequence:

\[
y \leftarrow x[T];
\]

\[
T \leftarrow T - 1;
\]
QUEUE

• Two pointers:

1. \(R \) to rear
2. \(F \) to front
3. \(R = F = 0 \) when the queue is empty

• Insertion at the rear of the queue:

\[
\begin{align*}
\text{if } R = M & \text{ then } R \leftarrow 1 \\
\text{else} & \quad R \leftarrow R + 1; \\
& \quad x[R] \leftarrow Y;
\end{align*}
\]

• Removal of an entry from the front of the queue:

\[
\begin{align*}
\text{if } F = M & \text{ then } F \leftarrow 1 \\
\text{else} & \quad F \leftarrow F + 1; \\
& \quad Y \leftarrow x[F];
\end{align*}
\]

\[
\text{if } F = R \text{ then } F \leftarrow R \leftarrow 0;
\]

• Note that the sequence of operations for removal is not the reverse of the sequence for insertion (i.e., we don’t remove front and update pointer)

• Problem: suppose \(R \) is always \(> F \) ?

• Solution: make the queue implicitly circular

\[
x[1] \ x[2] \ \ldots \ x[M] \ x[1]
\]

\(R = F = M \) when the queue is empty (initially)

• Question: Why not a problem in a bank line?

• Answer: Because the people move from position to position in the line
OVERFLOW

- Suppose we run out of memory?
- Assume only M locations are available

1. Stack insertion
 \[T \leftarrow T + 1; \]
 if \(T > M \) then OVERFLOW;
 \[x[T] \leftarrow Y; \]

2. Stack deletion:
 if \(T = 0 \) then UNDERFLOW;
 \[Y \leftarrow x[T]; \]
 \[T \leftarrow T - 1; \]

3. Queue insertion:
 if \(R = M \) then \(R \leftarrow 1; \)
 else \(R \leftarrow R + 1; \)
 if \(R = F \) then OVERFLOW
 else \(x[R] \leftarrow Y; \)

4. Queue deletion:
 if \(R = F \) then UNDERFLOW
 else
 \[\text{begin} \]
 if \(F = M \) then \(F \leftarrow 1 \)
 else \(F \leftarrow F + 1; \)
 \[Y \leftarrow x[F]; \]
 \[\text{end}; \]

- We start with \(F = R = M \)
- UNDERFLOW is not a real problem
MULTIPLE STACKS

- Two stacks can grow towards each other

- More than 2 stacks requires variable locations for base of stack

BASE[i] ≡ starting address of stack i
TOP[i] ≡ top of stack i

Insertion into stack i:

\[
\text{TOP}[i] \leftarrow \text{TOP}[i] + 1; \\
\text{if TOP}[i] > \text{BASE}[i+1] \text{ then OVERFLOW}; \\
\text{else CONTENTS(TOP}[i]) \leftarrow Y
\]

Deletion from stack i:

\[
\text{if TOP}[i] = \text{BASE}[i] \text{ then UNDERFLOW}; \\
Y \leftarrow \text{CONTENTS(TOP}[i]); \\
\text{TOP}[i] \leftarrow \text{TOP}[i] - 1;
\]

When stack i overflows:

1. find smallest \(k \ni i < k \leq n \) and \(\text{TOP}[k] < \text{BASE}[k+1] \)
 for \(\text{TOP}[k] \geq m > \text{BASE}[i+1] \)
 \(\text{CONTENTS(m+1)} \leftarrow \text{CONTENTS(m)} \)
 for \(i < j \leq k \)
 \(\text{BASE}[j] \leftarrow \text{BASE}[j] + 1; \text{TOP}[j] \leftarrow \text{TOP}[j] + 1; \)

2. find largest \(k \ni 1 \leq k < i \) and \(\text{TOP}[k] < \text{BASE}[k+1] \)
 for \(\text{BASE}[k+1] < m < \text{TOP}[i] \)
 \(\text{CONTENTS(m-1)} \leftarrow \text{CONTENTS(m)} \)
 for \(k < j \leq i \)
 \(\text{BASE}[j] \leftarrow \text{BASE}[j] - 1; \text{TOP}[j] \leftarrow \text{TOP}[j] - 1; \)

3. if \(\text{TOP}[k] = \text{BASE}[k+1] \forall k \neq i \) then REAL OVERFLOW
LINKED ALLOCATION

- Next node need not be physically adjacent
- Use an extra field to indicate address of next node

Sequential

| Item 1 | Item 2 | Item 3 | ... | Item n |

Linked

Item 1	B
Item 2	C
Item 3	D
...	
Item n	Ω

- Each node has two fields

Info Link

- Need a pointer to FIRST element

FIRST

Item 1

Item 2

Item 3

...

Item n Ω

Ω denotes the end of the list
COMPARISON OF LINKED(L) VS SEQUENTIAL(S)

1. L requires extra space for links
 • but if a node has many fields, then overhead is small
 • can share storage with L
 • repacking is inefficient with S when memory is densely packed

2. Easy to insert and delete with L
 • no need to move data as with S

3. S is superior for random access into a list (i.e., Kth element)
 • S: add an offset (K) to base address
 • L: traverse K links

4. L facilitates joining and breaking lists

5. L allows more complex data structures

6. S is superior for marching sequentially through a list
 • S makes use of indexing
 • L makes use of indirect addressing (⇒ memory access)

7. S takes advantage of locality
STORAGE MANAGEMENT

- Linked list of available storage
- \texttt{AVAIL} points to the first element
- Use \texttt{LINK} field

\texttt{x} \leftarrow \texttt{AVAIL} is short hand notation for allocating a new node as follows:

\begin{verbatim}
if AVAIL=\Omega then OVERFLOW
else
begin
 x \leftarrow \texttt{AVAIL};
 AVAIL \leftarrow \texttt{LINK(AVAIL)};
 \texttt{LINK(x)\leftarrow\Omega};
end;
\end{verbatim}

\texttt{AVAIL\leftarrow x} is short hand notation for returning a node as follows:

\begin{verbatim}
\texttt{LINK(x)\leftarrow AVAIL;}
\texttt{AVAIL\leftarrow x;}
\end{verbatim}
COMBINING SEQUENTIAL AND LINKED STORAGE

Allocation of a node of linked storage (x):

if $\text{AVAIL}=\Omega$ then
 if $\text{PoolMax}>\text{SeqMin}$ then OVERFLOW
else
 begin
 $\text{PoolMax} \leftarrow \text{PoolMax}+1$;
 $x \leftarrow \text{PoolMax}$;
 end;
else $x \leftarrow \text{AVAIL}$;

- No need to initially link up AVAIL

- A similar scheme is used in DBMS-10 for storing records on disk pages

logical address = $la = \begin{bmatrix} \text{page} & \text{line} \end{bmatrix}$

physical address = $\begin{bmatrix} \text{page} \end{bmatrix}(la) 0$ + CONTENTS[line #(la)]
LINKED STACKS

Insert Y into a linked stack:

$T = \text{top of stack pointer}$

\begin{align*}
 p & \leftarrow \text{AVAIL}; \\
 \text{INFO}(p) & \leftarrow Y; \\
 \text{LINK}(p) & \leftarrow T; \\
 T & \leftarrow p;
\end{align*}

Delete Y from a linked stack:

\begin{align*}
 & \text{if } T = \Omega \text{ then UNDERFLOW;} \\
 & p \leftarrow T; \\
 & T \leftarrow \text{LINK}(p); \\
 & Y \leftarrow \text{INFO}(p); \\
 & \text{AVAIL} \leftarrow p;
\end{align*}
LINKED QUEUES

F=Ω signifies an empty queue

Insert Y at the rear of a queue:

P←AVAIL;
INFO(P)←Y;
LINK(P)←Ω;
if F=Ω then F←P;
else LINK(R)←P;
R←P;

Delete Y from the front of a queue:

if F=Ω then UNDERFLOW;
P←F;
F←LINK(P);
Y←INFO(P);
AVAIL←P;
TOPOLOGICAL SORT

• Given: relations as to what precedes what (a<b)
• Desired: a partial ordering

• Formal definition of a partial ordering
 1. If X<Y and Y<Z then X<Z (transitivity)
 2. If X<Y then Y≠X (asymmetry)
 3. X≠X (irreflexivity)

2 implies the absence of loops

• Applications:
 1. job scheduling — PERT networks, CPM
 2. system tapes
 3. subroutine order so no routine is invoked before it is declared

• But see PASCAL FORWARD declarations
ALGORITHM

- Performs topological sort
- Proves by construction the existence of the ordering
- Recursive algorithm
 1. find an item, \(i \), not preceded by any other item
 2. remove \(i \) and perform the sort on the remaining items
- Brute force solution takes \(O(n \cdot m) \) time for \(n \) items and \(m \) successor-predecessor relation pairs by executing the following for each of the \(n \) items
 1. make a pass over successor-predecessor list \(S \) and find items that do not appear as a successor (\(m \) operations)
 2. remove all relations from \(S \) where an item found in 1 appears as a predecessor (\(m \) operations)
- Data Structure for better solution:
 \(t[K] \) corresponds to item \(K \) with 2 fields:
 - \(\text{PRED_COUNT}[t[K]] \equiv \# \text{ of direct predecessors of } K \) (i.e., \(L < K \))
 - \(\text{SUCCESSORS}[t[K]] \equiv \) pointer to a linked list containing the direct successors of item \(K \)

 Ex: \(t[7] \):

  ```
  1       4       5  \Omega
  \text{PRED\_COUNT} \downarrow \text{SUCCESSORS} \downarrow \text{DATA} \downarrow \text{NEXT}
  ```

- Maintain a queue of all items having 0 predecessors
- Each time item \(K \) is output:
 1. remove \(t[K] \) from the queue
 2. decrement \(\text{PRED_COUNT} \) field of all successors of \(K \)
 3. add to the queue any node whose \(\text{PRED_COUNT} \) field has gone to 0
- \(O(m+n) \) time and space
OBSERVATIONS

• Can use a stack instead of a queue

• The queue can be kept in the \texttt{PRED_COUNT} field of \texttt{t[K]} since once this field has gone to zero it will not be referenced again – i.e., it can no longer be decremented

• Sequential allocation for \texttt{t[K]} whose size is fixed
• Linked allocation for the successor relations

• Queue is linked by index (à la \texttt{FORTRAN})
• Successor list is linked by address
CIRCULAR LISTS

- Last node points back to first node
- No need to think of any node as a ‘last’ or ‘first’ node

1. Insert y at the left:

 $P \leftarrow \text{AVAIL}; \quad \text{INFO}(P) \leftarrow y$

 if $\text{PTR} = \Omega$ then $\text{PTR} \leftarrow \text{LINK}(P) \leftarrow P$

 else

 begin

 $\text{LINK}(P) \leftarrow \text{LINK}(\text{PTR}); \quad \text{LINK}(\text{PTR}) \leftarrow P$

 end;

2. Insert y at the right:

 Insert y at the left;

 $\text{PTR} \leftarrow P$;

3. Set y to the left node and delete:

 if $\text{PTR} = \Omega$ then UNDERFLOW;

 $P \leftarrow \text{LINK}(\text{PTR}); \quad y \leftarrow \text{INFO}(P)$;

 $\text{LINK}(\text{PTR}) \leftarrow \text{LINK}(P); \quad \text{AVAIL} \leftarrow P$

 if $\text{PTR} = P$ then $\text{PTR} \leftarrow \Omega$

 /* Check for a list of one element */

 /* before deleting */

1 and 3 imply stack
2 and 3 imply queue
1, 2, and 3 imply output restricted deque
ERASING A CIRCULAR LIST

Note: PTR is meaningless after erasing a list

Inserting Circular List L2 at the Right of Circular List L1:

Assume PTR1 points to L1 and PTR2 points to L2.

if PTR2≠Ω then
 begin
 if PTR1≠Ω then LINK(PTR1)→LINK(PTR2);
 PTR1←PTR2;
 PTR2←Ω;
 end

• A circular list can also be split into two lists
• Analogous to concatenation and deconcatenation of strings.
DOUBLY-LINKED LISTS

\[\text{RLINK(LLINK(Y)) = LLINK(RLINK(Y)) = Y} \]

- Disadvantage: More space for links
- Advantage: Given X, it can be deleted without having to locate its predecessor as is necessary with singly-linked lists

Easy to insert a node to the left or right of another node:

Insert to the right of Z:

\[
P \leftarrow \text{AVAIL};
\]

\[
\text{LLINK}(P) \leftarrow Z; \text{RLINK}(P) \leftarrow \text{RLINK}(Z);
\]

\[
\text{LLINK(RLINK}(Z)) \leftarrow P; \text{RLINK}(Z) \leftarrow P;
\]

Insert to the left of X:

Interchange LEFT and RIGHT in ‘Insertion to the right’.

- 4 links are changed (only 2 changed with singly-linked list)
TWO LINKS FOR THE PRICE OF ONE

Exclusive Or:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A⊕B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

A⊕A = 0
A⊕0 = A
A⊕1 = A

A⊕B = B⊕A

(A⊕B)⊕C = A⊕(B⊕C)

A⊕A⊕B = B

Let LINK(X_i) = LOC(X_{i+1}) ⊕ LOC(X_{i-1})

Knowing 2 successive locations (L_i, L_{i+1}) allows going left and right.

Ex: Exchange the contents of two locations without using temporaries

B ← A⊕B
A ← A⊕B
B ← B⊕(A⊕B) = A
ARRAYS

- Generalization of a linear list
- Allocate storage sequentially
- $\text{LOC}(A[m,n]) \equiv A_0 + A_1 \cdot m + A_2 \cdot n$
 A_0, A_1, A_2 are constants
- Ex: $Q[0:3,0:2,0:1]$

<table>
<thead>
<tr>
<th>Row-major order</th>
<th>Column-major order</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q[0,0,0]$</td>
<td>$Q[0,0,0]$</td>
</tr>
<tr>
<td>$Q[0,0,1]$</td>
<td>$Q[1,0,0]$</td>
</tr>
<tr>
<td>$Q[0,1,0]$</td>
<td>$Q[2,0,0]$</td>
</tr>
<tr>
<td>$Q[0,1,1]$</td>
<td>$Q[3,0,0]$</td>
</tr>
<tr>
<td>$Q[0,2,0]$</td>
<td>$Q[0,1,0]$</td>
</tr>
<tr>
<td>$Q[0,2,1]$</td>
<td>$Q[1,1,0]$</td>
</tr>
<tr>
<td>$Q[1,0,0]$</td>
<td>$Q[2,1,0]$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$Q[3,2,0]$</td>
<td>$Q[2,2,1]$</td>
</tr>
<tr>
<td>$Q[3,2,1]$</td>
<td>$Q[3,2,1]$</td>
</tr>
</tbody>
</table>

- Row-major is preferable = lexicographic order of indices
- $\text{LOC}(Q[i,j,k]) = \text{LOC}(Q[0,0,0]) + 6 \cdot i + 2 \cdot j + k$
K-DIMENSIONAL ARRAYS

- \(A[l_1:u_1, l_2:u_2, ..., l_k:u_k] \)

- \(\text{LOC}(A[i_1, i_2, ..., i_k]) = \text{LOC}(A[l_1,l_2,l_3,..,l_k]) + \\
 (u_2-l_2+1) \cdots (u_k-l_k+1)(i_1-l_1) + \cdots \\
 (u_k-l_k+1)(i_k-l_k) + i_k-l_k \\
 = \text{LOC}(A[l_1,l_2,l_3,..,l_k]) + \sum_{r=1}^{k} A_r \cdot (i_r-l_r) \\
 = \{ \text{LOC}(A[l_1,l_2,l_3,..,l_k]) - \sum_{r=1}^{k} A_r \cdot l_r \} + \sum_{r=1}^{k} A_r \cdot i_r \)

\(A_r = \prod_{r < s \leq k} (u_s-l_s+1) \)

\(A_k = 1 \)

- Semantics of \(A_r \):
 1. let \(i_1, i_2, \ldots, i_r \) be constant
 2. let \(j_{r+1}, j_{r+2}, \ldots, j_k \) vary through \(l_i \leq j_i \leq u_i \)
 3. consider \(A[i_1, i_2, \ldots, i_r, j_{r+1}, j_{r+2}, \ldots, j_k] \)
 - when \(i_r \) changes by 1 \(\text{LOC}(A[i_1, i_2, \ldots, i_k]) \) changes by \(A_r \)
ARRAY DESCRIPTOR
• ‘Dope vector’
• Ex: Q[0:3,0:2,0:1]

<table>
<thead>
<tr>
<th>Q₀</th>
<th>Address of first element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>Type (string, real, complex, ?)</td>
</tr>
<tr>
<td>3</td>
<td># of dimensions</td>
</tr>
<tr>
<td>0</td>
<td>u₁</td>
</tr>
<tr>
<td>3</td>
<td>A₁</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>l₂</td>
</tr>
<tr>
<td>2</td>
<td>u₂</td>
</tr>
<tr>
<td>2</td>
<td>A₂</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>0</td>
<td>lₙ</td>
</tr>
<tr>
<td>1</td>
<td>uₙ</td>
</tr>
<tr>
<td>1</td>
<td>Aₙ</td>
</tr>
</tbody>
</table>

• Why store the bounds?
• Not needed in the access function!
TRIANGULAR MATRIX

• \(\text{LOC}(A[j,k]) = A_0 + F_1(j) + F_2(k) \)

\[
\begin{bmatrix}
A[0,0] \\
A[1,0] & A[1,1] \\
\vdots \\
\end{bmatrix}
\]

\[
\text{LOC}(A[j,k]) = \text{LOC}(A[0,0]) + \left(\sum_{i=0}^{j-1} i+1 \right) + k
\]

\[
= \text{LOC}(A[0,0]) + \frac{j \cdot (j+1)}{2} + k
\]

• quadratic access function (not linear)

• Two triangular matrices:

\[
\begin{bmatrix}
A[0,0] & B[0,0] & B[1,0] & \ldots & B[n,0] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix} = C
\]

\(A[j,k] = C[j,k] \)

\(B[j,k] = C[k,j+1] \)
SPARSE MATRICES

- For each item:

<table>
<thead>
<tr>
<th>Left Link</th>
<th>Up Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row #</td>
<td>Col #</td>
</tr>
</tbody>
</table>

- For each row:

- For each column:

- Ex: \[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5
\end{pmatrix}
\]

- Circular list is useful for insertion and deletion of elements

- Ex: compute \(C = C + A \cdot B \)

\[
C_{ik} = C_{ik} + \sum_j A_{ij} \cdot B_{jk}
\]