RANGE TREES AND PRIORITY SEARCH TREES

Hanan Samet

Computer Science Department and
Center for Automation Research and
Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland 20742
e-mail: hjs@umiacs.umd.edu

Copyright © 1998 Hanan Samet

These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet
RANGE TREES

- Balanced binary search tree
- All data stored in the leaf nodes
- Leaf nodes linked in sorted order by a doubly-linked list
- Searching for $[B : E]$
 1. find node with smallest value $\geq B$ or largest $\leq B$
 2. follow links until reach node with value $> E$
- $O(\log_2 N + F)$ time to search, $O(N \cdot \log_2 N)$ to build, and $O(N)$ space for N points and F answers
- Ex: sort points in 2-d on their x coordinate value

```
Denver (5,45) Omaha (25,35) Chicago (35,40) Mobile (50,10) Toronto (60,75) Buffalo (80,65) Atlanta (85,15) Miami (90,5)
```
2-D RANGE TREES

• Binary tree of binary trees

• Sort all points along one dimension (say x) and store them in the leaf nodes of a balanced binary tree such as a range tree (single line)

• Each nonleaf node contains a 1-d range tree of the points in its subtrees sorted along y (double lines)

• Ex:

• Actually, don’t need the 1-d range tree in y at the root and at the sons of the root

Copyright © 1998 by Hanan Samet
SEARCHING 2-D RANGE TREES ([BX:EX],[BY:YE])

1. Search tree T for nodes BX and EX
 • find node LX with a minimum value ≥ BX
 • find node RX with a maximum value ≤ EX

2. Find their nearest common ancestor Q

3. Compute \{L_i\} and \{R_i\}, the sequences of nodes forming the paths from Q to LX and RX, respectively (including LX and RX but excluding Q)
 • LEFT(P) and RIGHT(P) are sons of P
 • MIDRANGE(P) discriminates on x coordinate value
 • RANGE_TREE(P) denotes the 1-d range tree stored at P

4. For each element in the sequences \{L_i\} and \{R_i\} do
 • if P and LEFT(P) are in \{L_i\}, then look for [BY,EY] in RANGE_TREE(RIGHT(P))
 • if P and RIGHT(P) are in \{R_i\}, then look for [BY,EY] in RANGE_TREE(LEFT(P))

5. Check if LX and RX are in ([BX:EX],[BY:YE])
 • Total \(O(\log_2^2 N + F)\) time to search and \(O(N \cdot \log_2 N)\) space and time to build for \(N\) points and \(F\) answers
EXAMPLE OF SEARCH IN A 2-D RANGE TREE

- Find all points in ([25:85],[8:16])

1. Find nearest common ancestor — i.e., A

2. Find paths to \(L_X = 25 \) and \(R_X = 85 \)

3. Look in subtrees
 - B and B’s left son D are in path, so search range tree of B’s right son E and report (50,10)
 - C and C’s right son G are in path, so search range tree of C’s left son F and report none

4. Check boundaries of \(x \) range (i.e., (25,35) and (85,15)) and report (85,15)
PRIORITY SEARCH TREES

- Sort all points by their x coordinate value and store them in the leaf nodes of a balanced binary tree (i.e., a range tree)
- Starting at the root, each node contains the point in its subtree with the maximum value for its y coordinate that has not been stored at a shallower depth in the tree; if no such node exists, then node is empty
- $O(N)$ space and $O(N \cdot \log_2 N)$ time to build for N points
- Result: range tree in x and heap (i.e., priority queue) in y
- **Ex:**

```
<table>
<thead>
<tr>
<th>City</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denver</td>
<td>(5, 45)</td>
</tr>
<tr>
<td>Omaha</td>
<td>(25, 35)</td>
</tr>
<tr>
<td>Chicago</td>
<td>(35, 40)</td>
</tr>
<tr>
<td>Mobile</td>
<td>(50, 10)</td>
</tr>
<tr>
<td>Toronto</td>
<td>(60, 75)</td>
</tr>
<tr>
<td>Buffalo</td>
<td>(80, 65)</td>
</tr>
<tr>
<td>Atlanta</td>
<td>(85, 15)</td>
</tr>
<tr>
<td>Miami</td>
<td>(90, 5)</td>
</tr>
</tbody>
</table>
```

- Good for semi-infinite ranges — i.e., $([BX:EX],[BY:\infty])$
- Can only perform a 2-d range query if find $([BX:EX],[BY:\infty])$ and discard all points (x,y) such that $y > EY$
- No need to link leaf nodes unless search for all points in range of x coordinate values
SEMI-INFINITE RANGE QUERY ON A PRIORITY SEARCH TREE ([BX:EX],[BY:∞])

• Procedure
 1. Descend tree looking for the nearest common ancestor of BX and EX — i.e., Q
 • associated with each examined node T is a point P
 • exit if P does not exist as all points in the subtrees have been examined and/or reported
 • exit if $P_y < BY$ as P is point with maximum y coordinate value in T
 • otherwise, output P if P_x is in [BX:EX]
 2. Once Q has been found, process left and right subtrees applying the tests above to their root nodes T
 • T in left (right) subtree of Q:
 a. check if BX (EX) in LEFT(T) (RIGHT(T))
 b. yes: all points in RIGHT(T) (LEFT(T)) are in x range
 • check if in y range
 • recursively apply to LEFT(T) (RIGHT(T))
 c. no: recursively apply to RIGHT(T) (LEFT(T))

• $O(\log_2 N + F)$ time to search for N points and F answers

• Ex: Find all points in ([35:80],[50:∞])
EXAMPLE OF A SEARCH IN A PRIORITY SEARCH TREE

- Find all points in ([35:80],[50:∞])

1. Find nearest common ancestor — i.e., A
 - output Toronto (60,75) since 60 is in [35:80] and 75 ≥ 50

2. Process left subtree of A (i.e., B)
 - cease processing as 45 < 50

3. Process right subtree of A (i.e., C)
 - output (80,65) as 65 ≥ 50 and 80 is in [35:80]

4. Examine midrange value of C which is 83 and descend left subtree of C (i.e., F)
 - cease processing since no point is associated with F meaning all nodes in the subtree have been examined
RANGE PRIORITY TREES

- Variation on priority search tree
- Inverse priority search tree: heap node stores point with minimum y coordinate value that has not been stored in a shallower depth in the tree (instead of maximum)

- Structure
 1. sort all points by their y coordinate value and store in leaf of a balanced binary tree such as range tree (single lines)
 - no need to link leaf nodes unless search for all points in range of x coordinate values
 2. nonleaf node left sons of their father contains a priority search tree of points in subtree (double lines)
 3. nonleaf node right sons of their father contains an inverse priority search tree of points in subtree (double lines)

- $O(N \cdot \log_2 N)$ space and time to build for N points
- Ex:
SEARCHING A RANGE PRIORITY TREE ([BX:EX],[BY:EY])

- Procedure
 1. find nearest common ancestor of BY and EY — i.e., Q
 2. all points in LEFT(Q) have y coordinate values <EY
 - want to retrieve just the ones ≥BY
 - find them with ([BX:EX],[BY:∞]) on priority tree of LEFT(Q)
 - priority tree is good for retrieving all points with a specific lower bound as it stores an upper bound and hence irrelevant values can be easily pruned
 3. all points in RIGHT(Q) have y coordinate values >BY
 - want to retrieve just the ones ≤EY
 - find them with ([BX:EX],[−∞:EY]) on the inverse priority tree of RIGHT(Q)
 - inverse priority tree is good for retrieving all points with a specific upper bound as it stores a lower bound and hence irrelevant values can be easily pruned
 - \(O(\log_2 N + F)\) time to search for \(N\) points and \(F\) answers
EXAMPLE OF A SEARCH IN A RANGE PRIORITY TREE

- Find all points in \([25:60],[15:45]\)

1. Find nearest common ancestor of 15 and 45 — i.e., A

2. Search for \([25:60],[15:\infty]\) in priority tree hanging from left son of A — i.e., B (all with \(y \leq 45\) since a range tree in \(y\) and in left subtree of a node with \(y\) midrange value of 38)
 - output (25,35) as in range
 - reject left subtree as 10 < lower limit of \(y\) range
 - reject items in right subtree as out of \(x\) range

3. Search for \([25:60],[\infty:45]\) in inverse priority tree hanging from right son of A — i.e., C (all with \(y \geq 15\) since in right subtree of a node with \(y\) midrange value of 38)
 - output (35,40) as in range
 - reject unreported items in left subtree as out of \(x\) range
 - reject right subtree as 65 > upper limit of \(y\) range

Copyright © 1998 by Hanan Samet