HIERARCHICAL REPRESENTATIONS OF THREE-DIMENSIONAL DATA

HANAN SAMET

COMPUTER SCIENCE DEPARTMENT AND CENTER FOR AUTOMATION RESEARCH AND INSTITUTE FOR ADVANCED COMPUTER STUDIES UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742-3411 USA

Copyright © 1998 Hanan Samet

These notes may not be reproduced by any means (mechanical or electronic or any other) without the express written permission of Hanan Samet
THREE-DIMENSIONAL DATA

1. Boundary model (BRep)
 - decompose boundary into set of faces, edges, and vertices
 - winged-edge representation captures topology
2. Constructive solid geometry (CSG)
 - combine primitive instances using geometric transformations and regularized Boolean set operations

3. Interior-based
 - voxels or uniformly-sized cells (spatial enumeration)
 - cells of different size (cell decomposition-e.g., octree)

4. Sweep - volume swept by a planar or a two-dimensional shape along a curve
OCTREES

1. Interior (voxels)
 - analogous to region quadtree
 - approximate object by aggregating similar voxels
 - good for medical images but not for objects with planar faces

 Ex:

 ![Diagram of interior octree](image1)

2. Boundary
 - adaptation of PM quadtree to three-dimensional data
 - decompose until each block contains
 a. one face
 b. more than one face but all meet at same edge
 c. more than one edge but all meet at same vertex
 - impose a spatial index on a boundary model (BRep)

 ![Diagram of boundary octree](image2)
PM-CSG TREES

- Each leaf node refers to a primitive object instead of a vertex, edge, or face
- Primitives are not restricted to halfspaces
- Only one primitive object per cell
- Full complement of CSG operations are not present
 1. set union = gluing
 2. set difference = cutting (NO set intersection!)
- 5 types of nodes
 1. full — completely in 1 primitive object
 2. empty — not in any primitive object
 3. positive boundary — contains part of 1 primitive object while rest is empty
 4. negative boundary — contains a boundary between 2 primitive objects O_1 and O_2 such that O_1 is being subtracted from O_2
 - part corresponding to O_2 is really empty
 5. nasty — at lowest level of resolution such that no further decomposition is possible
 - e.g., the node may be occupied by more than one primitive object
- Problem: why no set intersection as in conventional CSG?
- Solution: if operand primitives are not disjoint, then can’t always separate them so each cell has just one primitive
EXAMPLE OF PM-CSG TREE CONSTRUCTION

- Ex: two circular objects

1. Each PM-CSG tree consists of one boundary node
 - taking their difference does not yield a PM-CSG tree leaf node
 - decompose both trees as neither node is full or empty

2. Each node in the trees is a boundary node
 - taking their difference does not yield any PM-CSG tree leaf nodes
 - decompose corresponding nodes in both trees as none of the nodes resulting from the subtraction is full or empty

3. Trees contain empty, full, and boundary nodes
 - boundary minus empty yields positive boundary nodes
 - full minus boundary yields negative boundary nodes