Local Alignment

CMSC 423
Representing edits as alignments

prin-ciple
\[\begin{array}{c}
| | | | | x x \\
\end{array} \]
principal
(1 gap, 2 mm)

prin-cip-le
\[\begin{array}{c}
| | | | | | \\
\end{array} \]
principal-
(3 gaps, 0 mm)

misspell
\[\begin{array}{c}
| | | | | |
\end{array} \]
mis-pell
(1 gap)

prehistoric
\[\begin{array}{c}
| | | | | | | | | | |
\end{array} \]
---historic
(3 gaps)

aa-bb-ccaabb
\[\begin{array}{c}
| x | | | | |
\end{array} \]
ababbbc-a-b-
(5 gaps, 1 mm)

al-go-rithm-
\[\begin{array}{c}
| | xx | | x | |
\end{array} \]
alKhwariz-mi
(4 gaps, 3 mm)
Maximization vs. Minimization

Edit distance:

\[OPT(i, j) = \min \begin{cases}
\text{cost}(a_i, b_j) + OPT(i - 1, j - 1) & \text{match } a_i, b_j \\
gap + OPT(i - 1, j) & a_i \text{ is not matched} \\
gap + OPT(i, j - 1) & b_j \text{ is not matched}
\end{cases} \]

\textbf{Sequence Similarity:} replace min with a max and negate the parameters.

gap penalty \rightarrow gap benefit (probably negative)
cost \rightarrow score
Local alignment between s and t: Best alignment between a subsequence of s and a subsequence of t.

Motivation:
Many genes are composed of *domains*, which are subsequences that perform a particular function.
Recall: Global Alignment Matrix

$OPT(i, j)$ contains the score for the best alignment between:

the first i characters of string x \([\text{prefix } i \text{ of } x]\)
the first j character of string y \([\text{prefix } j \text{ of } y]\)
Local Alignment

New meaning of entry of matrix entry:

\[A[i, j] = \text{best score between:} \]
\[\text{some suffix of } x[1...i] \]
\[\text{some suffix of } y[1...j] \]
How do we fill in the local alignment matrix?

\[
A[i, j] = \max \begin{cases}
A[i, j - 1] + \text{gap} & (1) \\
A[i - 1, j] + \text{gap} & (2) \\
A[i - 1, j - 1] + \text{match}(i, j) & (3) \\
0 & (4)
\end{cases}
\]

(1), (2), and (3): same cases as before:
- gap in \(x\), gap in \(y\), match \(x\) and \(y\)

New case: 0 allows you to say the best alignment between a suffix of \(x[1..5]\) and a suffix of \(y[1..5]\) is the empty alignment.

Lets us “start over”
Local Alignment

• Initialize first row and first column to be 0.

• The score of the best local alignment is the largest value in the entire array.

• To find the actual local alignment:
 • start at an entry with the maximum score
 • traceback as usual
 • stop when we reach an entry with a score of 0
def local_align(x, y, score=ScoreParam(-7, 10, -5)):
 r"""Do a local alignment between x and y"""
 # create a zero-filled matrix
 A = make_matrix(len(x) + 1, len(y) + 1)

 best = 0
 optloc = (0,0)

 # fill in A in the right order
 for i in xrange(1, len(y)):
 for j in xrange(1, len(x)):

 # the local alignment recurrence rule:
 A[i][j] = max(
 A[i][j-1] + score.gap,
 A[i-1][j] + score.gap,
 A[i-1][j-1] + (score.match if x[i] == y[j] else score.mismatch),
 0
)

 # track the cell with the largest score
 if A[i][j] >= best:
 best = A[i][j]
 optloc = (i,j)

 # return the opt score and the best location
 return best, optloc
def make_matrix(sizex, sizey):
 """Creates a sizex by sizey matrix filled with zeros."""
 return [[0]*sizey for i in xrange(sizex)]

class ScoreParam:
 """The parameters for an alignment scoring function"""
 def __init__(self, gap, match, mismatch):
 self.gap = gap
 self.match = match
 self.mismatch = mismatch
Local Alignment Example #1

```python
local_align("AGCGTAG", "CTCGTC")
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>20</td>
<td>13</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>13</td>
<td>30</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>13</td>
<td>6</td>
<td>23</td>
<td>25</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

Note: this table written top-to-bottom instead of bottom-to-top
Local Alignment Example #2

```
local_align("bestoftimes", "soften")
```

```
*   b   e   s   t   o   f   t   i   m   e   s
*   0   0   0   0   0   0   0   0   0   0   0   0
s   0   0   0   10  3   0   0   0   0   0   0   10
o   0   0   0   3   5  13   6   0   0   0   0   3
f   0   0   0   0   0   0   6  23  16   9   2   0   0
t   0   0   0   0   10  3   16  33  26  19  12   5
e   0   0   10  3   3   5   9
n   0   0   3   5   0   0   0   0   0   2
```

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

Note: this table written top-to-bottom instead of bottom-to-top
Local Alignment Example #2

local_align("bestoftimes", "soften")

Note: this table written top-to-bottom instead of bottom-to-top

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7
More Local Alignment Examples

local_align("catdogfish", "dog")
* c a t d o g f i s h
* 0 0 0 0 0 0 0 0 0 0
 d 0 0 0 0 10 3 0 0 0 0
 o 0 0 0 0 3 20 13 6 0 0
 g 0 0 0 0 0 13 30 23 16 9 2

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

local_align("mississippi", "issp")
* m i s s s i s s i p p i
* 0 0 0 0 0 0 0 0 0 0 0 0
 i 0 0 10 3 0 10 3 0 10 3 0 10
 s 0 0 3 20 13 6 20 13 6 5 0 3
 s 0 0 0 13 30 23 16 30 23 16 9 2
 p 0 0 0 6 23 25 18 23 25 33 26 19

local_align("aaaa", "aa")
* a a a a a
* 0 0 0 0 0
 a 0 10 10 10 10
 a 0 10 20 20 20 20
Upmost and Downmost Alignments

When there are ties in the max{}, we have a choice about which arrow to follow.

If we prefer arrows higher in the matrix, we get the *upmost* alignment.

If we prefer arrows lower in the matrix, we get the *downmost* alignment.
Local / Global Recap

- Alignment score sometimes called the “edit distance” between two strings.
- Edit distance is sometimes called Levenshtein distance.
- Algorithm for local alignment is sometimes called “Smith-Waterman”
- Algorithm for global alignment is sometimes called “Needleman-Wunsch”

- Same basic algorithm, however.
- Underlies BLAST