Gap Penalties

CMSC 423
General Gap Penalties

Now, the cost of a run of k gaps is $\text{gap} \times k$.

It might be more realistic to support general gap penalty, so that the score of a run of k gaps is $\text{gap}(k) < \text{gap} \times k$.

Then, the optimization will prefer to group gaps together.

These have the same score, but the second one is often more plausible.

A single insertion of “GAAT” into the first string could change it into the second.

| AAAGAATTCA | vs. | AAAGAATTCA |
| A–A–A–T–CA | | AAA-----TCA |

vs.

 vs.

 vs.
General Gap Penalties

\[
\begin{align*}
\text{AAAGAATTCA} & \quad \text{vs.} \quad \text{AAAGAATTCA} \\
A-A-A-T-CA & \quad \text{vs.} \quad AAA----TCA
\end{align*}
\]

Previous DP no longer works with general gap penalties because the score of the last character depends on details of the previous alignment:

\[
\begin{align*}
\text{AAAGAAC} & \quad \text{vs.} \quad \text{AAAGAATC} \\
AAA---- & \quad \text{vs.} \quad AAA-----
\end{align*}
\]

Instead, we need to “know” how long a final run of gaps is in order to give a score to the last subproblem.
Three Matrices

We now keep 3 different matrices:

\[M[i,j] = \text{score of best alignment of } x[1..i] \text{ and } y[1..j] \text{ ending with a character-match or mismatch.} \]

\[X[i,j] = \text{score of best alignment of } x[1..i] \text{ and } y[1..j] \text{ ending with a space in } X. \]

\[Y[i,j] = \text{score of best alignment of } x[1..i] \text{ and } y[1..j] \text{ ending with a space in } Y. \]

\[
M[i, j] = \text{match}(i, j) + \max \left\{ M[i - 1, j - 1], X[i - 1, j - 1], Y[i - 1, j - 1] \right\}
\]

\[
X[i, j] = \max \left\{ M[i, j - k] - \text{gap}(k) \quad \text{for } 1 \leq k \leq j, \right. \\
\left. Y[i, j - k] - \text{gap}(k) \quad \text{for } 1 \leq k \leq j \right\}
\]

\[
Y[i, j] = \max \left\{ M[i - k, j] - \text{gap}(k) \quad \text{for } 1 \leq k \leq i, \right. \\
\left. X[i - k, j] - \text{gap}(k) \quad \text{for } 1 \leq k \leq i \right\}
\]
The M Matrix

We now keep 3 different matrices:

\[M[i,j] = \text{score of best alignment of } x[1..i] \text{ and } y[1..j] \text{ ending with a character-character match or mismatch.} \]

\[X[i,j] = \text{score of best alignment of } x[1..i] \text{ and } y[1..j] \text{ ending with a space in } X. \]

\[Y[i,j] = \text{score of best alignment of } x[1..i] \text{ and } y[1..j] \text{ ending with a space in } Y. \]

By definition, alignment ends in a match. Any kind of alignment is allowed before the match.

\[M[i,j] = \text{match}(i,j) + \max \begin{cases} M[i-1,j-1] \\ X[i-1,j-1] \\ Y[i-1,j-1] \end{cases} \]
The X (and Y) matrices

\[
X[i, j] = \max \begin{cases}
M[i, j - k] - \text{gap}(k) & \text{for } 1 \leq k \leq j \\
Y[i, j - k] - \text{gap}(k) & \text{for } 1 \leq k \leq j
\end{cases}
\]

k decides how long to make the gap.

We have to make the whole gap at once in order to know how to score it.
The X (and Y) matrices

\[X[i, j] = \max \begin{cases} M[i, j - k] - \text{gap}(k) & \text{for } 1 \leq k \leq j \\ Y[i, j - k] - \text{gap}(k) & \text{for } 1 \leq k \leq j \end{cases} \]

This case is automatically handled.
Running Time for Gap Penalties

\[M[i, j] = \text{match}(i, j) + \max \begin{cases} M[i-1, j-1] \\ X[i-1, j-1] \\ Y[i-1, j-1] \end{cases} \]

\[X[i, j] = \max \begin{cases} M[i, j-k] - \text{gap}(k) & \text{for } 1 \leq k \leq j \\ Y[i, j-k] - \text{gap}(k) & \text{for } 1 \leq k \leq j \end{cases} \]

\[Y[i, j] = \max \begin{cases} M[i-k, j] - \text{gap}(k) & \text{for } 1 \leq k \leq i \\ X[i-k, j] - \text{gap}(k) & \text{for } 1 \leq k \leq i \end{cases} \]

Final score is \(\max \{ M[n,m], X[n,m], Y[n,m] \} \).

How do you do the traceback?

Runtime:

- Assume \(|X| = |Y| = n \) for simplicity: \(3n^2 \) subproblems
- \(2n^2 \) subproblems take \(O(n) \) time to solve (because we have to try all \(k \))
 \[\Rightarrow O(n^3) \] total time
Affine Gap Penalties

- $O(n^3)$ for general gap penalties is usually too slow...

- We can still encourage spaces to group together using a special case of general penalties called affine gap penalties:
 \[
 \text{gap}_\text{start} = \text{the cost of starting a gap}
 \]
 \[
 \text{gap}_\text{extend} = \text{the cost of extending a gap by one more space}
 \]

- Same idea of using 3 matrices, but now we don’t need to search over all gap lengths, we just have to know whether we are starting a new gap or not.
Affine Gap Penalties

\[M[i, j] = \text{match}(i, j) + \max \left\{ M[i-1, j-1], \ X[i-1, j-1], \ Y[i-1, j-1] \right\} \]

- **match between x and y**

\[X[i, j] = \max \left\{ \text{gap_start} + \text{gap_extend} + M[i, j-1], \ \text{gap_extend} + X[i, j-1], \ \text{gap_start} + \text{gap_extend} + Y[i, j-1] \right\} \]

- **gap in x**

\[Y[i, j] = \max \left\{ \text{gap_start} + \text{gap_extend} + M[i-1, j], \ \text{gap_start} + \text{gap_extend} + X[i-1, j], \ \text{gap_extend} + Y[i-1, j] \right\} \]

- **gap in y**

If previous alignment ends in match, this is a new gap.
Affine Gap as Finite State Machine

match(i,j)

M

gs+ge
gs+ge

gs+ge
match(i,j)

Y

match(i,j)

gs+ge
gs+ge

X

gs+ge

ge

ge
Affine Base Cases (Global)

- \(M[0, i] \) = “score of best alignment between 0 characters of \(x \) and \(i \) characters of \(y \) that ends in a match” = \(-\infty\) because no such alignment can exist.

- \(X[0, i] \) = “score of best alignment between 0 characters of \(x \) and \(i \) characters of \(y \) that ends in a gap in \(x \)” = \(\text{gap}_\text{start} + i \times \text{gap}_\text{extend} \) because this alignment looks like:

```
------------------
YYYYYYYYYYYY
```

- \(X[i, 0] \) = “score of best alignment between \(i \) characters of \(x \) and 0 characters of \(y \) that ends in a gap in \(X \)” = \(-\infty\)

```
XXXXXXXXXXXX-
----------
```

- \(M[i, 0] = M[0, i] \) and \(Y[0, i] \) and \(Y[i, 0] \) are computed using the same logic as \(X[i, 0] \) and \(X[0, i] \)
Affine Gap Runtime

• $3mn$ subproblems

• Each one takes constant time

• Total runtime $O(mn)$:
 • back to the run time of the basic running time.

Traceback

• Arrows now can point between matrices.

• The possible arrows are given, as usual, by the recurrence.

• E.g. What arrows are possible leaving a cell in the M matrix?
Why do you “need” 3 matrices?

- Alternative **WRONG** algorithm:

 \[
 M[i][j] = \max(\\
 M[i-1][j-1] + \text{cost}(x[i], y[i]), \\
 M[i-1][j] + \text{gap} + (\text{gap}_\text{start} \text{ if } \text{Arrow}[i-1][j] \neq \leftarrow), \\
 M[j][i-1] + \text{gap} + (\text{gap}_\text{start} \text{ if } \text{Arrow}[i][j-1] \neq \downarrow) \\
)
 \]

WRONG Intuition: we only need to know whether we are starting a gap or extending a gap.

The arrows coming out of each subproblem tell us how the best alignment ends, so we can use them to decide if we are starting a new gap.

PROBLEM: The best alignment for strings \(x[1..i]\) and \(y[1..j]\) doesn’t have to be used in the best alignment between \(x[1..i+1]\) and \(y[1..j+1]\)
Why 3 Matrices: Example

match = 10, mismatch = -2, gap = -7, gap_start = -15

\[
\begin{align*}
\text{OPT}(4, 3) &= \text{optimal score} = 30 - 15 - 7 = 8 \\
\text{WRONG}(5, 3) &= 30 - 15 - 7 - 15 - 7 = -14
\end{align*}
\]

this is why we need to keep the X and Y matrices around.
they tell us the score of ending with a gap in one of the sequences.
Side Note: Lower Bounds

- Suppose the lengths of x and y are n.

- Clearly, need at least $\Omega(n)$ time to find their global alignment (have to read the strings!)

- The DP algorithms show global alignment can be done in $O(n^2)$ time.
Side Note: Lower Bounds

• Suppose the lengths of x and y are n.

• Clearly, need at least $\Omega(n)$ time to find their global alignment (have to read the strings!)

• The DP algorithms show global alignment can be done in $O(n^2)$ time.

• A trick called the “Four Russians Speedup” can make a similar dynamic programming algorithm run in $O(n^2 / \log n)$ time.
 • We probably won’t talk about the Four Russians Speedup.
 • The important thing to remember is that only one of the four authors is Russian...
 (Alrazaarov, Dinic, Kronrod, Faradzev, 1970)

• Open questions: Can we do better? Can we prove that we can’t do better? No one knows...
Recap

- Local alignment: extra “0” case.

- General gap penalties require 3 matrices and $O(n^3)$ time.

- Affine gap penalties require 3 matrices, but only $O(n^2)$ time.
What you should know by now...

- Dynamic programming framework
- Global & local sequence alignment algorithms with basic gap penalties
- Alignment with general gap penalties
- Alignment with affine gap penalties
- Longest common subsequence (board lecture)
- Subset Sum (board lecture)