Due at the start of class Thursday, December 8, 2011.

We know a number of problems are \textbf{NP}-complete including: Circuit SAT, SAT, 3-SAT, Independent Set, Vertex Cover, Hamiltonian Cycle, Traveling Salesman, 3-Dimensional Matching, Graph Coloring, Subset Sum, Clique, and Subgraph Isomorphism.

Problem 1. HAMILTONIAN PATH PROBLEM: given a directed graph, does it contain a simple path that goes through every vertex exactly once?

HAMILTONIAN CYCLE PROBLEM: given a directed graph, does it contain a directed simple cycle that goes through each vertex exactly once?

Assume that the HAMILTONIAN PATH PROBLEM is known to be \textbf{NP}-complete. Given this assumption, prove that the HAMILTONIAN CYCLE PROBLEM is \textbf{NP}-complete. (Make sure to show that the HAMILTONIAN CYCLE PROBLEM is in \textbf{NP}).

Problem 2. Consider the problem DENSE SUBGRAPH: Given G, does it contain a subgraph H that has exactly K vertices and at least Y edges? Prove that this problem is \textbf{NP}-complete.

Problem 3. Assume that the following problem is \textbf{NP}-complete.

\textbf{PARTITION}: Given a finite set A and a “size” $s(a)$ (a positive integer) for each $a \in A$. Is there a subset $A' \subseteq A$ such that $\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a)$?

Now prove that the following SCHEDULING problem is \textbf{NP}-complete:

Given a set X of “tasks”, and a “length” $\ell(x)$ for each task, three processors, and a “deadline” D. Is there a way of assigning the tasks to the three processors such that all the tasks are completed within the deadline D? A task can be scheduled on \textit{any} processor, and there are no precedence constraints. (Hint: first prove the \textbf{NP}-completeness of SCHEDULING with two processors.)

Problem 4. Prove that the following ZERO CYCLE problem is \textbf{NP}-complete:

Given a simple directed graph $G = (V, E)$, with positive and negative weights $w(e)$ on the edges $e \in E$. Is there a simple cycle of zero weight in G? (Hint: Reduce \textbf{PARTITION} to ZERO CYCLE.)
Problem 5. The \textit{WEIGHTED INDEPENDENT SET PROBLEM (WISP)} is, given a
graph $G = (V, E)$ with weights on the nodes, find a subset of the nodes whose sum of
weights is as large as possible such that there is no edge between any pair of nodes in
the subset.

(a) WISP is an optimization problem. Define a decision version of WISP.
(b) Show that the decision version is in \textbf{NP}.
(c) Show that the decision version is complete for \textbf{NP} (i.e., it is \textbf{NP}-hard).
(d) Show that if you could solve the optimization version in polynomial time that
you could also solve the decision version in polynomial time.
(e) Show that if you could solve the decision version in polynomial time that you
could also solve the optimization version in polynomial time. HINT: First find
the weight of an optimal independent set.

Problem 6.

(a) Generalize the 3-DIMENSIONAL MATCHING PROBLEM to “4-DIMENSIONAL
MATCHING”.
(b) Show that 4-DIMENSIONAL MATCHING is bf NP-complete.