CMSC 631 — Program Analysis and Understanding

Data Flow Analysis
Data Flow Analysis

• A framework for proving facts about programs

• Reasons about lots of little facts

• Little or no interaction between facts
 ▪ Works best on properties about how program computes

• Based on all paths through program
 ▪ Including infeasible paths
Source code parsed to produce AST

AST transformed to CFG

Data flow analysis operates on control flow graph (and other intermediate representations)
 - Symbolic execution often uses the AST
Abstract Syntax Tree (AST)

- Programs are written in text
 - i.e., sequences of characters
 - Awkward to work with

- First step: Convert to structured representation
 - Use lexer (like flex) to recognize tokens
 - Sequences of characters that make words in the language
 - Use parser (like bison) to group words structurally
 - And, often, to produce AST
Abstract Syntax Tree Example

\[
x := a + b; \\
y := a \times b; \\
\text{while } (y > a) \{ \\
\quad a := a + 1; \\
\quad x := a + b \\
\}
\]
ASTs

- ASTs are *abstract*
 - They don’t contain all information in the program
 - E.g., spacing, comments, brackets, parentheses
 - Any ambiguity has been resolved
 - E.g., $a + b + c$ produces the same AST as $(a + b) + c$

- For more info, see CMSC 430
 - In this class, we will generally begin at the AST level
Disadvantages of ASTs

• AST has many similar forms
 ▪ E.g., for, while, repeat...until
 ▪ E.g., if, ?, switch

• Expressions in AST may be complex, nested
 ▪ \((42 \times y) + (z > 5 \ ? \ 12 \times z : z + 20) \)

• Want simpler representation for analysis
 ▪ ...at least, for dataflow analysis
Control-Flow Graph (CFG)

• A directed graph where
 ▪ Each node represents a statement
 ▪ Edges represent control flow

• Statements may be
 ▪ Assignments $x := y \text{ op } z$ or $x := \text{ op } z$
 ▪ Copy statements $x := y$
 ▪ Branches goto L or $\text{if x relop y goto L}$
 ▪ etc.
Control-Flow Graph Example

\[
\begin{align*}
 x & := a + b; \\
 y & := a \times b; \\
 \text{while } (y > a) \{ \\
 a & := a + 1; \\
 x & := a + b \\
 \}
\end{align*}
\]
Variations on CFGs

• We usually don’t include declarations (e.g., int x;)
 ▪ But there’s usually something in the implementation

• May want a unique entry and exit node
 ▪ Won’t matter for the examples we give

• May group statements into basic blocks
 ▪ A sequence of instructions with no branches into or out of the block
Control-Flow Graph w/Basic Blocks

x := a + b;
y := a * b;
while (y > a + b) {
 a := a + 1;
 x := a + b
}

• Can lead to more efficient implementations
• But more complicated to explain, so...
 ▪ We’ll use single-statement blocks in lecture today
Graph Example with Entry and Exit

x := a + b;
y := a * b;
while (y > a) {
 a := a + 1;
 x := a + b
}

- All nodes without a (normal) predecessor should be pointed to by entry
- All nodes without a successor should point to exit

Tuesday, September 20, 2011
CFG vs. AST

• CFGs are much simpler than ASTs
 ▪ Fewer forms, less redundancy, only simple expressions

• But...AST is a more faithful representation
 ▪ CFGs introduce temporaries
 ▪ Lose block structure of program

• So for AST,
 ▪ Easier to report errors and other messages
 ▪ Easier to explain to programmer
 ▪ Easier to unpars to produce readable code
Analysis: Available Expressions
Analysis: Available Expressions

• An expression e is available at program point p if
 ▪ e is computed on every path to p, and
 ▪ the value of e has not changed since the last time e was computed on every path to p
Analysis: Available Expressions

• An expression e is available at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e was computed on every path to p

• Optimization
 - If an expression is available, need not be recomputed
 - (At least, if it’s still in a register somewhere)
Data Flow Facts

- Is expression e available?
- Facts:
 - $a + b$ is available
 - $a * b$ is available
 - $a + 1$ is available
Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a + b</td>
<td>a + b, a + b</td>
</tr>
<tr>
<td>y := a * b</td>
<td>a * b</td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td></td>
<td>a + 1, a + b</td>
</tr>
</tbody>
</table>

```
entry
x := a + b
y := a * b
y > a
a := a + 1
x := a + b
exit
```
Computing Available Expressions

entry

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

entry

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

∅

entry

\{a + b\}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

∅ → entry

{x := a + b} → y := a * b

y > a → a := a + 1

a := a + 1 → x := a + b

y > a → exit
Computing Available Expressions

∅ → entry

{x := a + b} → x := a + b

{a + b} → y := a * b

{a + b, a * b} → y > a

a := a + 1 → exit

x := a + b
Computing Available Expressions

∅

entry

\{a + b\}

x := a + b

\{a + b, a * b\}

y := a * b

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

∅

entry

{x := a + b}

y := a * b

{a + b, a * b}

y > a

{a + b, a * b}

a := a + 1

x := a + b

exit

Tuesday, September 20, 2011
Computing Available Expressions

∅

entry

{x := a + b}

{a + b, a * b}

{a + b, a * b}

y := a * b

y > a

{a + b, a * b}

a := a + 1

x := a + b

exit
Computing Available Expressions

∅

entry

{x := a + b}

{y := a * b}

{y > a}

{a := a + 1}

∅

{y > a, a * b}

{x := a + b}

y > a

y := a * b

x := a + b

a := a + 1

entry

exit
Computing Available Expressions

∅ → entry

{x := a + b} → y := a * b

{a + b, a * b} → y > a

{a + b, a * b} → a := a + 1

∅ → x := a + b

entry

y := a * b

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

∅ → entry

{x := a + b} → y := a * b

{a + b, a * b} → y > a

{a + b, a * b} → a := a + 1

∅ → x := a + b

{a + b}
Computing Available Expressions

∅ → entry → \{a + b\}

\{a + b, a * b\} → y := a * b

\{a + b, a * b\} → y > a

∅ → a := a + 1

\{a + b\} → x := a + b

(exit)
Computing Available Expressions

∅

entry

{x := a + b}

y := a * b

{a + b, a * b}

y > a

{a + b, a * b}

∅

a := a + 1

{x := a + b}

{a + b}

exit
Computing Available Expressions

∅ → entry

{x := a + b} → y := a * b

{a + b, a * b} → y > a

∅ → x := a + b

∅ → a := a + 1

∅ → x := a + b

{a + b} → exit
Computing Available Expressions

∅

entry

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

∅

{a + b}

{a + b, a * b}

{a + b}

{a + b}

exit

{a + b}

{a + b}
Computing Available Expressions

∅

entry

{x := a + b}

{a + b}

{a + b, a * b}

{a + b, a * b}

∅

{x := a + b}

y := a * b

y > a

a := a + 1

x := a + b

{a + b}

{a + b}

{a + b}

exit

Tuesday, September 20, 2011
Computing Available Expressions

\emptyset -> entry

$\{a + b\}$ -> $x := a + b$

$\{a + b, a \times b\}$ -> $y := a \times b$

\emptyset -> exit

\emptyset -> $a := a + 1$

$\{a + b\}$ -> $x := a + b$

$\{a + b\}$ -> $y > a$

$\{a + b\}$ -> $y := a \times b$

$\{a + b\}$ -> $x := a + b$

$\{a + b\}$
Terminology

- A join point is a program point where two branches meet

- Available expressions is a forward must problem
 - Forward = Data flow from in to out
 - Must = Property must hold on all paths to the join

- Dataflow analysis requires facts that summarize all paths to a join point
 - Symbolic execution analyzes each path separately
Data Flow Equations

• Let s be a statement
 - $\text{succ}(s) = \{ \text{immediate successor statements of } s \}$
 - $\text{pred}(s) = \{ \text{immediate predecessor statements of } s \}$
 - $\text{In}(s) = \text{program point just before executing } s$
 - $\text{Out}(s) = \text{program point just after executing } s$

• $\text{In}(s) = \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')$

• $\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))$
Liveness Analysis
Liveness Analysis

• A variable v is *live* at program point p if

 - v will be used on some execution path originating from p...

 - before v is overwritten
Liveness Analysis

• A variable v is *live* at program point p if
 - v will be used on some execution path originating from p...
 - before v is overwritten

• Optimization
 - If a variable is not live, no need to keep it in a register
 - If variable is dead at assignment, can eliminate assignment
Data Flow Equations

• Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges
 - Expr is available only if available on all paths

• Liveness is a \textit{backward may} problem
 - To know if variable live, need to look at future uses
 - Variable is live if used on some path

- \textbf{Out}(s) = \bigcup_{s' \in \text{succ}(s)} \text{In}(s')
- \textbf{In}(s) = \text{Gen}(s) \cup (\text{Out}(s) - \text{Kill}(s))
Gen and Kill

• What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a, b</td>
<td>x</td>
</tr>
<tr>
<td>y := a * b</td>
<td>a, b</td>
<td>y</td>
</tr>
<tr>
<td>y > a</td>
<td>a, y</td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
Computing Live Variables

\[
x := a + b
\]

\[
y := a \times b
\]

\[
y > a
\]

\[
a := a + 1
\]

\[
x := a + b
\]
Computing Live Variables

\[
x := a + b
\]
\[
y := a \times b
\]
\[
y > a
\]
\[
a := a + 1
\]
\[
x := a + b
\]

\{x\}
Computing Live Variables

{x, y, a}

{x}
Computing Live Variables

{x, y, a} → x := a + b

y := a * b

y > a

a := a + 1

{x, y, a} → x := a + b

{x} → a := a + 1

{x} → y := a * b

{x} → x := a + b
Computing Live Variables

\[x := a + b \]

\[y := a \times b \]

\[y > a \]

\[a := a + 1 \]

\[x := a + b \]

\{x, y, a\} \rightarrow \{x\} \rightarrow \{y, a, b\} \rightarrow \{x, y, a\}
Computing Live Variables

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

{x, y, a}

{y, a, b}

{y, a, b}

{x, y, a}

{x}
Computing Live Variables

\[
x := a + b
\]

\[
y := a \times b
\]

\[
y > a
\]

\[
a := a + 1
\]

\[
x := a + b
\]
Computing Live Variables

\[
x := a + b
\]
\[
y := a \times b
\]
\[
y > a
\]
\[
a := a + 1
\]
\[
x := a + b
\]
Computing Live Variables

\[
x := a + b
\]
\[
y := a \times b
\]
\[
y > a
\]
\[
a := a + 1
\]
\[
x := a + b
\]
Computing Live Variables

\begin{align*}
&x := a + b \\
&y := a \times b \\
&y > a \\
a := a + 1 \\
x := a + b
\end{align*}
Computing Live Variables

\[
\begin{align*}
\{x, a, b\} & \\
y := a \times b & \\
\{x, y, a, b\} & \\
y > a & \\
\{y, a, b\} & \\
a := a + 1 & \\
\{y, a, b\} & \\
x := a + b & \\
\{x, y, a, b\} & \\
\{x\} & \\
\end{align*}
\]
Computing Live Variables

{x, y, a, b} →
x := a + b

{y, a, b} →
y := a * b

{y, a, b} →
y > a

{y, a, b} →
a := a + 1

{y, a, b} →
x := a + b

{a, b} →

{x}
Very Busy Expressions

• An expression e is very busy at point p if
 ▪ On every path from p, expression e is evaluated before the value of e is changed

• Optimization
 ▪ Can hoist very busy expression computation

• What kind of problem?
 ▪ Forward or backward?
 ▪ May or must?
• An expression e is very busy at point p if
 - On every path from p, expression e is evaluated before the value of e is changed

• Optimization
 - Can hoist very busy expression computation

• What kind of problem?
 - Forward or backward? backward
 - May or must?
Very Busy Expressions

• An expression e is *very busy* at point p if
 - On every path from p, expression e is evaluated before the value of e is changed

• Optimization
 - Can hoist very busy expression computation

• What kind of problem?
 - Forward or backward? **backward**
 - May or must? **must**
Reaching Definitions

• A definition of a variable \(v \) is an assignment to \(v \)

• A definition of variable \(v \) reaches point \(p \) if
 ▪ There is no intervening assignment to \(v \)

• Also called def-use information

• What kind of problem?
 ▪ Forward or backward?
 ▪ May or must?
A definition of a variable \(v \) is an assignment to \(v \).

A definition of variable \(v \) reaches point \(p \) if

- There is no intervening assignment to \(v \).

Also called def-use information.

What kind of problem?

- Forward or backward? \(\text{forward} \)
- May or must?
Reaching Definitions

• A definition of a variable \(v \) is an assignment to \(v \).

• A definition of variable \(v \) reaches point \(p \) if
 ▪ There is no intervening assignment to \(v \).

• Also called def-use information.

• What kind of problem?
 ▪ Forward or backward? \(\text{forward} \)
 ▪ May or must? \(\text{may} \)
Space of Data Flow Analyses

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
</tbody>
</table>

• Most data flow analyses can be classified this way
 - A few don’t fit: bidirectional analysis

• Lots of literature on data flow analysis
Data Flow Facts and Lattices

- Typically, data flow facts form a lattice
 - Example: Available expressions

\[
\begin{align*}
& \text{“top”} \\
& a+b, a^b, a+1 \\
& a+b, a^b \\
& a^b, a+1 \\
& a+b \\
& a^b \\
& (\text{none}) \\
& \text{“bottom”}
\end{align*}
\]
Partial Orders

• A partial order is a pair \((P, \leq)\) such that

 - \(\leq \subseteq P \times P\)
 - \(\leq\) is reflexive: \(x \leq x\)
 - \(\leq\) is anti-symmetric: \(x \leq y\) and \(y \leq x\) \(\Rightarrow x = y\)
 - \(\leq\) is transitive: \(x \leq y\) and \(y \leq z\) \(\Rightarrow x \leq z\)
Lattices

• A partial order is a lattice if \(\sqcap \) and \(\sqcup \) are defined on any set:

 - \(\sqcap \) is the *meet* or *greatest lower bound* operation:
 \[
 x \sqcap y \leq x \quad \text{and} \quad x \sqcap y \leq y
 \]
 if \(z \leq x \) and \(z \leq y \), then \(z \leq x \sqcap y \)

 - \(\sqcup \) is the *join* or *least upper bound* operation:
 \[
 x \leq x \sqcup y \quad \text{and} \quad y \leq x \sqcup y
 \]
 if \(x \leq z \) and \(y \leq z \), then \(x \sqcup y \leq z \)
Lattices (cont’d)

• A finite partial order is a lattice if meet and join exist for every pair of elements

• A lattice has unique elements \bot and \top such that
 - $x \cap \bot = \bot$
 - $x \cup \bot = x$
 - $x \cap \top = x$
 - $x \cup \top = \top$

• In a lattice, $x \leq y$ iff $x \cap y = x$
 - $x \leq y$ iff $x \cup y = y$

• A partial order is a complete lattice if meet and join are defined on any set $S \subseteq P$
Useful Lattices

• \((2^S, \subseteq)\) forms a lattice for any set \(S\)
 - \(2^S\) is the powerset of \(S\) (set of all subsets)

• If \((S, \leq)\) is a lattice, so is \((S, \geq)\)
 - i.e., lattices can be flipped

• The lattice for constant propagation
Forward Must Data Flow Algorithm
Forward Must Data Flow Algorithm

$$Out(s) = Top \text{ for all statements } s$$
Out(s) = Top for all statements s

// Slight acceleration: Could set Out(s) = Gen(s) ∪ (Top - Kill(s))
Forward Must Data Flow Algorithm

Out(s) = \textit{Top} for all statements s

// Slight acceleration: Could set Out(s) = Gen(s) U (\textit{Top} - \textit{Kill}(s))

\textit{W} := \{ \text{all statements} \} \quad \text{(worklist)}
Forward Must Data Flow Algorithm

\[
\text{Out}(s) = \text{Top} \text{ for all statements } s
\]

// Slight acceleration: Could set \(\text{Out}(s) = \text{Gen}(s) \cup (\text{Top} - \text{Kill}(s))\)

\[
\mathcal{W} := \{ \text{all statements} \} \quad \text{(worklist)}
\]

repeat
Forward Must Data Flow Algorithm

Out(s) = \textit{Top} for all statements s

// Slight acceleration: Could set Out(s) = Gen(s) ∪ (\textit{Top} - \text{Kill(s)})

\textit{W} := \{ \text{all statements} \} \quad \text{(worklist)}

repeat
 Take s from \textit{W}
Forward Must Data Flow Algorithm

Out(s) = Top for all statements s

// Slight acceleration: Could set Out(s) = Gen(s) ∪ (Top - Kill(s))

W := { all statements } (worklist)

repeat
 Take s from W
 In(s) := \(\cap_{s' \in \text{pred}(s)} \text{Out}(s') \)
Out(s) = Top for all statements s

// Slight acceleration: Could set Out(s) = Gen(s) U (Top - Kill(s))

W := { all statements } (worklist)

repeat
 Take s from W
 In(s) := $\cap_{s' \in \text{pred}(s)}$ Out(s')
 temp := Gen(s) U (In(s) - Kill(s))
Forward Must Data Flow Algorithm

\textbf{Out}(s) = Top \textbf{ for all statements } s

// Slight acceleration: Could set Out(s) = Gen(s) \cup (Top - Kill(s))

\textbf{W} := \{ \text{ all statements } \} \quad \text{(worklist)}

\textbf{repeat}

\textbf{Take } s \textbf{ from } \textbf{W}

\textbf{In}(s) := \cap_{s' \in \text{ pred}(s)} \textbf{Out}(s')

\text{temp} := \textbf{Gen}(s) \cup (\textbf{In}(s) - \text{ Kill}(s))

\textbf{if} (\text{temp } \neq \textbf{Out}(s)) \{
Forward Must Data Flow Algorithm

Out(s) = Top for all statements s

// Slight acceleration: Could set Out(s) = Gen(s) U (Top - Kill(s))

W := \{ all statements \} (worklist)

repeat
 Take s from W
 In(s) := \bigcap_{s' \in \text{pred}(s)} Out(s')
 temp := Gen(s) U (In(s) - Kill(s))
 if (temp \neq Out(s)) {
 Out(s) := temp
 }

Tuesday, September 20, 2011
Forward Must Data Flow Algorithm

Out(s) = Top for all statements s

// Slight acceleration: Could set Out(s) = Gen(s) U (Top - Kill(s))

W := { all statements } (worklist)
repeat
 Take s from W
 In(s) := \cap_{s' \in \text{pred}(s)} Out(s')

 temp := Gen(s) U (In(s) - Kill(s))

 if (temp != Out(s)) {
 Out(s) := temp
 W := W U succ(s)
Forward Must Data Flow Algorithm

Out(s) = Top for all statements s

// Slight acceleration: Could set Out(s) = Gen(s) \cup (Top - Kill(s))

W := \{ all statements \} \ (worklist)
repeat
 Take s from W
 In(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')
 temp := Gen(s) \cup (\text{In}(s) - \text{Kill}(s))
 if (temp \neq \text{Out}(s)) {
 Out(s) := temp
 W := W \cup \text{succ}(s)
 }
}
Forward Must Data Flow Algorithm

Out(s) = Top for all statements s

// Slight acceleration: Could set Out(s) = Gen(s) \cup (Top - Kill(s))

W := \{ all statements \} (worklist)

repeat
 Take s from W
 In(s) := \bigcap_{s' \in \text{pred}(s)} Out(s')

 temp := Gen(s) \cup (In(s) - Kill(s))

 if (temp \neq Out(s)) {
 Out(s) := temp
 W := W \cup \text{succ}(s)
 }

until W = \emptyset
Monotonicity

• A function f on a partial order is monotonic if

 $$x \leq y \Rightarrow f(x) \leq f(y)$$

• Easy to check that operations to compute In and Out are monotonic

 ▪ $\text{In}(s) := \cap_{s' \in \text{pred}(s)} \text{Out}(s')$

 ▪ $\text{temp} := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))$

• Putting these two together,

 ▪ $\text{temp} := f_s(\cap_{s' \in \text{pred}(s)} \text{Out}(s'))$
Monotonicity

- A function f on a partial order is monotonic if
 \[x \leq y \implies f(x) \leq f(y) \]

- Easy to check that operations to compute In and Out are monotonic
 - $\text{In}(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')$
 - $\text{temp} := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))$

- Putting these two together,
 - $\text{temp} := f_s\left(\bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \right)$
Termination

- We know the algorithm terminates because
 - The lattice has finite height
 - The operations to compute In and Out are monotonic
 - On every iteration, we remove a statement from the worklist and/or move down the lattice
Forward Data Flow, Again

Out(s) = Top for all statements s
W := \{ all statements \} (worklist)
 repeat
 Take s from W
 temp := f_s (\cap_{s' \in \text{pred}(s)} \text{Out}(s')) (f_s \text{ monotonic transfer fn})
 if (temp \neq \text{Out}(s)) {
 \text{Out}(s) := \text{temp}
 W := W \cup \text{succ}(s)
 }
 until W = \emptyset
Lattices \((\mathbf{P}, \leq)\)
Lattices \((P, \leq)\)

- Available expressions
Lattices (P, \leq)

- Available expressions
 - $P = \text{sets of expressions}$
Lattices \((P, \leq)\)

- Available expressions
 - \(P = \) sets of expressions
 - \(S_1 \sqcap S_2 = S_1 \cap S_2\)
Lattices \((P, \leq)\)

- Available expressions
 - \(P = \) sets of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \) set of all expressions
Lattices \((P, \leq)\)

- Available expressions
 - \(P = \) sets of expressions
 - \(S_1 \sqcap S_2 = S_1 \cap S_2\)
 - \(Top = \) set of all expressions

- Reaching Definitions
Lattices (P, \leq)

- **Available expressions**
 - $P = \text{sets of expressions}$
 - $S_1 \cap S_2 = S_1 \cap S_2$
 - $Top = \text{set of all expressions}$

- **Reaching Definitions**
 - $P = \text{set of definitions (assignment statements)}$
Lattices \((P, \leq)\)

- **Available expressions**
 - \(P = \) sets of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(Top = \) set of all expressions

- **Reaching Definitions**
 - \(P = \) set of definitions (assignment statements)
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
Lattices \((P, \leq)\)

- **Available expressions**
 - \(P =\) sets of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} =\) set of all expressions

- **Reaching Definitions**
 - \(P =\) set of definitions (assignment statements)
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} =\) empty set
Fixpoints

• We always start with Top
 ▪ Every expression is available, no defns reach this point
 ▪ Strongest possible hypothesis
 - = true of fewest number of states

• Revise as we encounter contradictions
 ▪ Always move down in the lattice (with meet)

• Result: A greatest fixpoint
Lattices \((P, \leq)\), cont’d
Lattices \((P, \leq)\), cont’d

- Live variables
Lattices \((P, \leq)\), cont’d

- Live variables
 - \(P = \) sets of variables
Lattices \((P, \leq)\), cont’d

- Live variables
 - \(P = \) sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
Lattices \((P, \preceq)\), cont’d

• Live variables
 - \(P = \) sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \) empty set
Lattices \((P, \leq), \text{ cont'd}\)

- Live variables
 - \(P = \) sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \) empty set
Lattices \((P, \leq)\), cont’d

• Live variables
 - \(P = \text{sets of variables}\)
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \text{empty set}\)

• Very busy expressions
Lattices \((P, \leq)\), cont’d

• Live variables
 - \(P = \) sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - Top = empty set

• Very busy expressions
 - \(P = \) set of expressions
Lattices \((P, \leq)\), cont’d

- Live variables
 - \(P = \) sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \) empty set

- Very busy expressions
 - \(P = \) set of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
Lattices \((P, \leq)\), cont’d

- Live variables
 - \(P = \) sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \) empty set

- Very busy expressions
 - \(P = \) set of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \) set of all expressions
Forward vs. Backward

\[\text{Out}(s) = \text{Top} \text{ for all } s \]
\[W := \{ \text{all statements} \} \]
repeat
 Take s from W
 temp := f_s (\bigcap s' \in \text{pred}(s) \text{Out}(s'))
 if (temp != \text{Out}(s)) {
 \text{Out}(s) := temp
 W := W \cup \text{succ}(s)
 }
until W = \emptyset

\[\text{In}(s) = \text{Top} \text{ for all } s \]
\[W := \{ \text{all statements} \} \]
repeat
 Take s from W
 temp := f_s (\bigcap s' \in \text{succ}(s) \text{In}(s'))
 if (temp != \text{In}(s)) {
 \text{In}(s) := temp
 W := W \cup \text{pred}(s)
 }
until W = \emptyset
Termination Revisited

• How many times can we apply this step:

\[
\text{temp} := f_s (\bigcap_{s' \in \text{pred}(s)} \text{Out}(s'))
\]

if (temp \neq \text{Out}(s)) \{ ... \}

- Claim: \text{Out}(s) only shrinks
 - Proof: \text{Out}(s) starts out as \text{Top}
 - So \text{temp} must be \leq \text{Top} after first step
 - Assume \text{Out}(s')} shrinks for all predecessors \text{s'} of \text{s}
 - Then \bigcap_{s' \in \text{pred}(s)} \text{Out}(s') shrinks
 - Since \text{f}_s \text{ monotonically}, \text{f}_s (\bigcap_{s' \in \text{pred}(s)} \text{Out}(s')) shrinks
Termination Revisited (cont’d)

• A descending chain in a lattice is a sequence
 - $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \ldots$

• The height of a lattice is the length of the longest descending chain in the lattice

• Then, dataflow must terminate in $O(nk)$ time
 - $n = \# \text{ of statements in program}$
 - $k = \text{height of lattice}$
 - assumes meet operation takes $O(1)$ time
Least vs. Greatest Fixpoints

• Dataflow tradition: Start with Top, use $meet$
 - To do this, we need a $meet$ semilattice $with$ top
 - complete meet semilattice = meets defined for any set
 - finite height ensures termination
 - Computes greatest fixpoint

• Denotational semantics tradition: Start with $Bottom$, use $join$
 - Computes least fixpoint
Distributive Data Flow Problems

• By monotonicity, we also have

\[f(x \sqcap y) \leq f(x) \sqcap f(y) \]

• A function \(f \) is distributive if

\[f(x \sqcap y) = f(x) \sqcap f(y) \]
Benefit of Distributivity

- Joins lose no information

\[
k(h(f(\top) \sqcap g(\top))) = \\
k(h(f(\top)) \sqcap h(g(\top))) = \\
k(h(f(\top))) \sqcap k(h(g(\top)))
\]
Accuracy of Data Flow Analysis

• Ideally, we would like to compute the meet over all paths (MOP) solution:
 ■ Let \(f_s \) be the transfer function for statement \(s \)
 ■ If \(p \) is a path \(\{s_1, \ldots, s_n\} \), let \(f_p = f_n; \ldots; f_1 \)
 ■ Let \(\text{path}(s) \) be the set of paths from the entry to \(s \)
 \[
 \text{MOP}(s) = \bigcap_{p \in \text{path}(s)} f_p(\top)
 \]
• If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution
What Problems are Distributive?

• Analyses of *how* the program computes
 ▪ Live variables
 ▪ Available expressions
 ▪ Reaching definitions
 ▪ Very busy expressions

• All Gen/Kill problems are distributive
A Non-Distributive Example

• Constant propagation

• In general, analysis of what the program computes in not distributive
 - Symbolic execution more accurate for nondistributive problems
Practical Implementation

- Data flow facts = assertions that are true or false at a program point

- Represent set of facts as bit vector
 - $Fact_i$ represented by bit i
 - Intersection = bitwise and, union = bitwise or, etc

- “Only” a constant factor speedup
 - But very useful in practice
Basic Blocks

• A basic block is a sequence of statements s.t.
 ▪ No statement except the last in a branch
 ▪ There are no branches to any statement in the block except the first

• In practical data flow implementations,
 ▪ Compute Gen/Kill for each basic block
 - Compose transfer functions
 ▪ Store only In/Out for each basic block
 ▪ Typical basic block ~5 statements
Order Matters

• Assume forward data flow problem
 ▪ Let $G = (V, E)$ be the CFG
 ▪ Let k be the height of the lattice

• If G acyclic, visit in topological order
 ▪ Visit head before tail of edge

• Running time $O(|E|)$
 ▪ No matter what size the lattice
Order Matters — Cycles

• If G has cycles, visit in reverse postorder
 - Order from depth-first search

• Let $Q = \text{max \# back edges on cycle-free path}$
 - Nesting depth
 - Back edge is from node to ancestor on DFS tree

• Then if $\forall x. f(x) \leq x$ (sufficient, but not necessary)
 - Running time is $O((Q + 1)|E|)$
 - Note direction of req’t depends on top vs. bottom
Flow-Sensitivity

• Data flow analysis is flow-sensitive
 ▪ The order of statements is taken into account
 ▪ I.e., we keep track of facts per program point

• Alternative: Flow-insensitive analysis
 ▪ Analysis the same regardless of statement order
 ▪ Standard example: types

 - /* x : int */ x := ... /* x : int */
Terminology Review

• Must vs. May
 ▪ (Not always followed in literature)
• Forwards vs. Backwards
• Flow-sensitive vs. Flow-insensitive
• Distributive vs. Non-distributive
Data Flow Analysis and Functions

• What happens at a function call?
 ▪ Lots of proposed solutions in data flow analysis literature

• In practice, only analyze one procedure at a time

• Consequences
 ▪ Call to function kills all data flow facts
 ▪ May be able to improve depending on language, e.g., function call may not affect locals
More Terminology

- An analysis that models only a single function at a time is *intraprocedural*.
- An analysis that takes multiple functions into account is *interprocedural*.
- An analysis that takes the whole program into account is...guess?

- Note: *global* analysis means “more than one basic block,” but still within a function.
• Data Flow is good at analyzing local variables
 ▪ But what about values stored in the heap?
 ▪ Not modeled in traditional data flow

• In practice: *x := e
 ▪ Assume all data flow facts killed (!)
 ▪ Or, assume write through x may affect any variable
 whose address has been taken

• In general, hard to analyze pointers
Data Flow Analysis and Optimization
Data Flow Analysis and Optimization

• Moore’s Law: Hardware advances double computing power every 18 months.
Data Flow Analysis and Optimization

• Moore’s Law: Hardware advances double computing power every 18 months.

• Proebsting’s Law: Compiler advances double computing power every 18 years.
Data Flow Analysis and Optimization

• Moore’s Law: Hardware advances double computing power every 18 months.

• Proebsting’s Law: Compiler advances double computing power every 18 years.
 ▪ Not so much bang for the buck!
DF Analysis and Defect Detection

- LCLint - Evans et al. (UVa)
- METAL - Engler et al. (Stanford, now Coverity)
- ESP - Das et al. (MSR)
- FindBugs - Hovemeyer, Pugh (Maryland)
 - For Java. The first three are for C.

- Many other one-shot projects
 - Memory leak detection
 - Security vulnerability checking (tainting, info. leaks)
Appendix: Elimination

• Recall using one transfer function per basic block

• Why not generalize this idea beyond a basic block?
 - “Collapse” larger constructs into smaller ones, combining data flow equations
 - Eventually program collapsed into a single node!
 - “Expand out” back to original constructs, rebuilding information
Lattices of Functions

• Let \((P, \leq)\) be a lattice

• Let \(M\) be the set of monotonic functions on \(P\)

• Define \(f \leq_f g\) if for all \(x\), \(f(x) \leq g(x)\)

• Define the function \(f \sqcap g\) as
 - \((f \sqcap g)(x) = f(x) \sqcap g(x)\)

• Claim: \((M, \leq_f)\) forms a lattice
Elimination Methods: Conditionals

\[f_{\text{ite}} = (f_{\text{then}} \circ f_{\text{if}}) \sqcap (f_{\text{else}} \circ f_{\text{if}}) \]

\[
\begin{align*}
\text{Out}(\text{if}) &= f_{\text{if}}(\text{In}(\text{ite}))) \\
\text{Out}(\text{then}) &= (f_{\text{then}} \circ f_{\text{if}})(\text{In}(\text{ite})) \\
\text{Out}(\text{else}) &= (f_{\text{else}} \circ f_{\text{if}})(\text{In}(\text{ite})))
\end{align*}
\]
Elimination Methods: Loops
Elimination Methods: Loops

\[f_{\text{while}} = f_{\text{head}} \sqcap \]
\[f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \sqcap \]
\[f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \circ f_{\text{body}} \circ f_{\text{head}} \sqcap \ldots \]
Elimination Methods: Loops (cont’d)

• Let \(f^i = f \circ f \circ \ldots \circ f \) (i times)
 - \(f^0 = \text{id} \)
• Let
 \[
 g(j) = \prod_{i \in [0..j]} (f_{\text{head}} \circ f_{\text{body}})^i \circ f_{\text{head}}
 \]
• Need to compute limit as \(j \) goes to infinity
 - Does such a thing exist?
• Observe: \(g(j+1) \leq g(j) \)
Height of Function Lattice

• Assume underlying lattice \((P, \leq)\) has finite height
 ▪ What is height of lattice of monotonic functions?
 ▪ Claim: finite (can you prove this?)

• Therefore, \(g(j)\) converges
Non-Reducible Flow Graphs

• Elimination methods usually only applied to reducible flow graphs
 ▪ Ones that can be collapsed
 ▪ Standard constructs yield only reducible flow graphs

• Unrestricted goto can yield non-reducible graphs
Comments

• Can also do backwards elimination
 ▪ Not quite as nice (regions are usually single entry but often not single exit)

• For bit-vector problems, elimination efficient
 ▪ Easy to compose functions, compute meet, etc.

• Elimination originally seemed like it might be faster than iteration
 ▪ Not really the case