CMSC 631 – Program Analysis and Understanding
Fall 2011
What you’ll learn

• Formal systems and notations
 ▪ Vocabulary for talking about programs

• Program analysis
 ▪ Automatic reasoning about source code

• Programming language features
 ▪ Affects programs and how we reason about them
How you’ll learn it

• Implement
 ▪ You will build some program analyzers as projects using the Objective Caml programming language

• Prove
 ▪ You will mechanize mathematics for reasoning about programs using the Coq proof assistant
 - Interactive theorem proving: ensures your proofs are actually correct, and therefore that you really understand

• Take it one step further: substantial final project
What you’ll gain

• Better programming ability
 ▪ By understanding programming languages deeply

• Mathematical methods and maturity
 ▪ Formalization and proof techniques will transfer to other areas

• How to use Coq and program in OCaml
 ▪ Write reliable code faster! Prove the four color theorem (with high assurance)!
Personnel

- Michael Hicks
 - Office: 4131 AVW (for now)
 - E-mail: mwh@cs.umd.edu
 - Office hours: 2 hours, TBD (requests?)
 - Or by appointment
Prerequisite

• CMSC 430 or equivalent
 - Ideas we will use in this class:
 - Parse trees/abstract syntax trees
 - BNF notation for grammars
 - Programming language maturity
 - Familiarity with several different languages/paradigms
 - General information about programming language design
 - Talk to me if you’re not sure
Textbooks

• No required textbooks
 ▪ But see web page for suggestions
 ▪ Recommended text:
 - Pierce, *Types and Programming Languages*
 ▪ A second book, also good:
 - Huth and Ryan, *Logic in Computer Science*

• Neither covers everything in the course
• Recommended two on reserve in CS library
Forum

• Piazza
 ▪ See class web page for link
 ▪ Need to sign up

• Can use piazza to ask and answer questions about lectures, assignments, etc.
 ▪ Please use this forum unless you have personal request (e.g., about your grade, an absence, etc.)
Expectations: Homework (40%)

• Programming assignments
 - Symbolic execution and type inference

• Proofs using Coq
 - From basic mathematics to
 - methods for expressing a program’s semantics to
 - methods for proving properties about programs
Late Policy on Assignments

• Programming/Coq assignments: Due at midnight
 ▪ Submit via the submit server (see class web page)

• No late submissions
 ▪ Contact me about extenuating circumstances
 - E.g., religious holidays
 ▪ Inform me as soon as possible
Expectations: Participation (10%)

• Will need to read some papers for class
 ▪ Scattered through the semester
 ▪ Should come prepared to contribute to discussion

• (Possible) student presentations of papers
 ▪ Read 1-2 papers on a topic
 ▪ Present (partial) lecture in class about the material
Expectations: Project (25%)

- Class goal: Teach you how to do research
 - So you have to do research as part of the class

- Substantial research project (25% of grade)
 - Any topic vaguely related to the class is acceptable
 - Will post some suggestions for projects later on
 - May also be able to share project with other class
 - Completed in groups of size 2 (possibly 1 or 3)

- Will occupy the latter 2/3 of semester
 - But will still have some Coq assignments
Expectations: Project (cont’d)

• Deliverables
 - Project proposal (one page) + talk with me
 - Project write-up
 - A conference-style paper (5-15 pages, as appropriate)
 - Implementation, if any
 - In-class presentation
 - 15-20 minutes, depending on # of projects

• In the past, several 631 projects led to papers
 - Not required (!), but possible
Expectations: Exam (25%)

• Final exam
 § Based on course assignments
 § Take home exam
 - The exam will be available for 96 hours
 - You pick a 48-hour window during that time during which to take the exam
 § Dates on class web page
Academic Dishonesty

• Don’t do it
CMSC 631 – Program Analysis and Understanding
Fall 2011

21 Ideas and Applications in Program Analysis in 40 Minutes
Abstract Interpretation

• Rice’s Theorem: Any non-trivial property of programs is undecidable
 ▪ Uh-oh! We can’t do anything. So much for this course...

• Need to make some kind of approximation
 ▪ Abstract the behavior of the program
 ▪ ...and then analyze the abstraction

• Seminal papers: Cousot and Cousot, 1977, 1979
Example

\[e ::= n \mid e + e \]

\[\alpha(n) = \begin{cases}
- & n < 0 \\
0 & n = 0 \\
+ & n > 0
\end{cases} \]

- Notice the need for ? value
- Arises because of the abstraction
Dataflow Analysis

• Classic style of program analysis

• Used in optimizing compilers
 ▪ Constant propagation
 ▪ Common sub-expression elimination
 ▪ Loop unrolling and code motion
 ▪ etc.

• Efficiently implementable
 ▪ At least, *intraprocedurally* (within a single proc.)
 ▪ Use bit-vectors, fixpoint computation
Control-Flow Graph

\[x := 3 \]
if (!x) then
 \[y := z + w \]
else
 L: \{ y := 0 \}
\[x := 2 \ast x \]
if (!x) then goto L
Lattices and Termination

• Dataflow facts form a lattice

\[\text{Out}(S) = \text{Gen}(S) \cup (\text{In}(S) - \text{Kill}(S)) \]

• Each statement has a transformation function

- \[x = ? \]
- \[x = 3 \]
- \[x = 6 \]
- \[\ldots \]
- \[x = \ast \]

• Terminates because

- Finite height lattice
- Monotone transformation functions
Static Single Assignment Form

• Transform CFG so each use has a single defn
Lambda Calculus

• Three syntactic forms

 \[e ::= x \quad \text{variable} \]
 \[\lambda x.e \quad \text{function} \]
 \[e_1 e_2 \quad \text{function application} \]

• One reduction rule

 \[
 (\lambda x.e_1) e_2 \rightarrow e_1[e_2/x] \quad \text{(replace } x \text{ by } e_2 \text{ in } e_1)\]

• Can represent any computable function!
Example

• Conditionals
 ▪ true = \(\lambda x.\lambda y.x \) false = \(\lambda x.\lambda y.y \)
 ▪ if a then b else c = a b c
 - if true then b else c = (\(\lambda x.\lambda y.x \)) b c \(\rightarrow \) (\(\lambda y.b \)) c \(\rightarrow \) b
 - if false then b else c = (\(\lambda x.\lambda y.y \)) b c \(\rightarrow \) (\(\lambda y.y \)) c \(\rightarrow \) c

• Can also represent numbers, pairs, data structures, etc, etc.

• Result: Lingua franca of PL
ML: Meta-Language

- ML designed originally for theorem provers
 - But after a while, realized could be general-purpose

- Mostly-functional language
 - Similar to lambda-calculus
 - Mostly functional, encouraged not to use side-effects
 - Call-by-value

- We’ll use OCaml for programming assignments
Program Semantics

• To be able to analyze programs, we have to know what they mean
 ▪ Semantics comes from the Greek semaino, “to mean”

• Three styles of formal semantics
 ▪ Operational semantics (major focus)
 - Like an interpreter
 ▪ Denotational semantics
 - Like a compiler
 ▪ Axiomatic semantics
 - Based on what you can prove about programs
Operational Semantics

- Evaluation is described as transitions in some abstract machine
 - Example: Beta reduction from lambda calculus
 \[(\lambda x.e_1) e_2 \rightarrow e_1[e_2 \backslash x]\]
 - State of machine described by current expression

- There are different styles of abstract machines
 - Small-step (as above), big-step, etc

- The meaning of a program is its fully reduced form (a.k.a. a value)
Denotational Semantics

• The meaning of a program is defined as a mathematical object, e.g., a function or number

• Typically define an interpretation function $\llbracket \cdot \rrbracket$

 ▪ Program fragment as argument and returns meaning

 ▪ E.g., $\llbracket 3+4 \rrbracket = 7$

• Gets interesting when we try to find denotations of loops or recursive functions
Denotational Semantics Example

- \(b ::= \text{true} \mid \text{false} \mid b \lor b \mid b \land b \)
- \(e ::= 0 \mid 1 \mid \ldots \mid e + e \mid e \ast e \)
- \(s ::= e \mid \text{if } b \text{ then } s \text{ else } s \)
- Semantics:
 - \(\llbracket \text{true} \rrbracket = \text{true} \)
 - \(\llbracket b_1 \lor b_2 \rrbracket = \begin{cases} \text{true} & \text{if } \llbracket b_1 \rrbracket = \text{true} \text{ or } \llbracket b_2 \rrbracket = \text{true} \\ \text{false} & \text{otherwise} \end{cases} \)
 - \(\llbracket \text{if } b \text{ then } s_1 \text{ else } s_2 \rrbracket = \begin{cases} \llbracket s_1 \rrbracket & \text{if } \llbracket b \rrbracket = \text{true} \\ \llbracket s_2 \rrbracket & \text{if } \llbracket b \rrbracket = \text{false} \end{cases} \)
Axiomatic Semantics

• Operational and denotational semantics let us reason about the meaning of a program
 ▪ Are two programs equivalent? Does a program terminate? Does a program implement a particular specification

• Axiomatic semantics define a program’s meaning in terms of what one can prove about it
 ▪ Hoare, Dijkstra, Gries, others
Hoare Triples

• \{P\} S \{Q\}
 - If statement S is executed in a state satisfying precondition P, then S will terminate, and Q will hold of the resulting state
 - Partial correctness: ignore termination

• Weakest precondition for assignment
 - Axiom: \{Q[e/x]\} x := e \{Q\}
 - Example: \{y > 3\} x := y \{x > 3\}
Type Systems

• Machine represents all values as bit patterns
 ▪ Is 00110110111100101100111010101000
 - A signed integer? Unsigned integer? Floating-point number?
 Address of an integer? Address of a function? etc.

• Type systems allow us to distinguish these
 ▪ To choose operation (which + op), e.g., FORTRAN
 ▪ To avoid programming mistakes
 - E.g., don’t treat integer as a function address
Simply-typed λ-calculus

$$e ::= x | n | \lambda x:\tau.e | e \ e$$

$$\tau ::= \text{int} | \tau \rightarrow \tau$$

$$A \vdash e : \tau \quad \text{in type environment } A, \text{ expression } e \text{ has type } \tau$$

$$\begin{align*}
A \vdash n : \text{int} \\
A \vdash x : A(x)
\end{align*}$$

$$\begin{align*}
A[\tau\backslash x] \vdash e : \tau' \\
A \vdash \lambda x:\tau.e : \tau \rightarrow \tau'
\end{align*}$$

$$\begin{align*}
A \vdash e_1 : \tau \rightarrow \tau' \quad A \vdash e_2 : \tau \\
A \vdash e_1 \ e_2 : \tau'
\end{align*}$$
Subtyping

• Liskov:
 - If for each object \(o_1 \) of type \(S \) there is an object \(o_2 \) of type \(T \) such that for all programs \(P \) defined in terms of \(o_1 \), the behavior of \(P \) is unchanged when \(o_2 \) is substituted for \(o_1 \) then \(S \) is a subtype of \(T \).

• Informal statement
 - If anyone expecting a \(T \) can be given an \(S \) instead, then \(S \) is a subtype of \(T \).
Other Technologies and Topics

- Control-flow analysis
- CFL reachability and polymorphism
- Constraint-based analysis
- Alias and pointer analysis
- Region-based memory management
- Garbage collection
- More...
Applications: Dataflow analysis

- Optimizing compilers
 - I.e., any good compiler

- ESP: Path-sensitive program checker (Microsoft)
 - Example: can check for correct file I/O properties, like files are opened for reading before being read

- Meta-level compilation (Coverity)

- ...

Friday, September 2, 2011
Applications: Abstract Interp.

• Terminator (Microsoft)
 - Analyzes code to prove that it terminates (!)
 - Applied to device drivers for Windows kernel
 - Tricky part is reasoning about the heap

• ASTREE (INRIA and others)
 - Used to detect all possible runtime failures (divide by zero, null pointer deref, array out of bounds) on embedded code
 - Used regularly on Airbus avionics software
Applications: Symbolic Execution

- A symbolic executor is a language interpreter
 - Rather than only work on concrete values, also works on symbolic values
 - Ex: \(y = \text{fresh}(); \ assert(f(y) == 2*y-1); \)
 - Solver conceptually “forks” on tests of symbolic values
- Uses SMT solver to check assertions, path feasibility
 - SMT = Satisfiability Modulo Theory = SAT
 - Solvers can solve very large instances, even though SAT theoretically intractable (i.e., NP Hard)
- Very popular: DART, CUTE, EXE, KLEE, Otter, Rubyx, etc
 - SAGE tool in regular use at Microsoft for fuzz testing
Applications: Axiomatic Semantics

• Extended Static Checker
 ▪ Can perform deep reasoning about programs
 ▪ Array out-of-bounds
 ▪ Null pointer errors
 ▪ Failure to satisfy internal invariants

• Uses the Simplify theorem prover
Applications: Type Systems

• Type qualifiers
 - Format-string vulnerabilities, deadlocks, file I/O protocol errors, kernel security holes

• Jif (Java+Information Flow)
 - Annotate standard types with additional security labels, where type correctness implies correct protection of sensitive data
Conclusion

• PL has a great mix of theory and practice
 ▪ Very deep theory
 ▪ But lots of practical applications

• Recent exciting new developments
 ▪ Focus on program correctness (and security)
 - instead of speed
 ▪ Scalability to large programs
 ▪ In greater use in mainstream development