CMSC 631 – Program Analysis and Understanding

Static Single Assignment Form and Dominators
Motivation

• Data flow analysis needs to represent facts at every program point

• What if
 ▪ There are a lot of facts and
 ▪ There are a lot of program points?
 ▪ \Rightarrow potentially takes a lot of space/time

• Most likely, we’re keeping track of irrelevant facts
Example

\[
x := 3
\]

\[
y := a + b
\]

\[
z := 2 \times y
\]

\[
w := y + z
\]

\[
a > b
\]

\[
y := a - b
\]

\[
y := y \times 10
\]

\[
w := w + y
\]

\[
z := w + x
\]
Example

\[
x := 3
\]

\[
y := a + b
\]

\[
z := 2 \times y
\]

\[
w := y + z
\]

\[
a > b
\]

\[
y := a - b
\]

\[
y := y \times 10
\]

\[
w := w + y
\]

\[
z := w + x
\]
Sparse Representation

- Instead, we’d like to use a sparse representation
 - Only propagate facts about x where they’re needed

- Enter *static single assignment* form
 - Each variable is defined (assigned to) exactly once
 - But may be used multiple times
• Add SSA edges from definitions to uses
 ▪ No intervening statements use/define variable
 ▪ Safe to propagate only along SSA edges
Example: SSA

- Add SSA edges from definitions to uses
 - No intervening statements use/define variable
 - Safe to propagate only along SSA edges
What About Joins?

- Add Φ functions/nodes to model joins
 - Intuitively, takes meet of arguments
 - At code generation time, need to eliminate Φ nodes
Constant Propagation Revisited

• Initialize facts at each program point
 ▪ C(n) := top

• Add all SSA edges to the worklist

• While the worklist isn’t empty,
 ▪ Remove an edge (x, y) from the worklist
 ▪ C(y) := C(y) meet C(x)
 ▪ Add SSA edges from y if C(y) changed
Def-Use Chains vs. SSA
Def-Use Chains vs. SSA

• Alternative: Don’t do renaming; instead, compute simple def-use chains (reaching definitions)
 □ Propagate facts along def-use chains
Def-Use Chains vs. SSA

• Alternative: Don’t do renaming; instead, compute simple def-use chains (reaching definitions)
 - Propagate facts along def-use chains

• Drawback: Potentially quadratic size
Def-Use Chains vs. SSA (cont’d)

case (...) of
 0: a := 1;
 1: a := 2;
 2: a := 3;
end

case (...) of
 0: b := a;
 1: c := a;
 2: d := a;
end
Def-Use Chains vs. SSA (cont’d)

case (...) of
 0: a := 1;
 1: a := 2;
 2: a := 3;
end

case (...) of
 0: b := a;
 1: c := a;
 2: d := a;
end

Def-Use Chains

- a := 1
- a := 2
- a := 3
- b := a
- c := a
- d := a
Def-Use Chains vs. SSA (cont’d)

```plaintext
case (...) of
  0: a := 1;
  1: a := 2;
  2: a := 3;
end

case (...) of
  0: b := a;
  1: c := a;
  2: d := a;
end
```

Def-Use Chains

```
a := 1
\downarrow
b := a
```
```
a := 2
\downarrow
c := a
```
```
a := 3
\downarrow
d := a
```

SSA Form

```
a_1 := 1
\downarrow
a := \Phi(a_1, a_2, a_3)
```
```
a_2 := 2
\downarrow
```
```
a_3 := 3
\downarrow
```

```
a_4 := \Phi(a_1, a_2, a_3)
\downarrow
```
```
b_1 := a_4
```
```
c_1 := a_4
```
```
d_1 := a_4
```
Def-Use Chains vs. SSA (cont’d)

```
case (...) of
  0: a := 1;
  1: a := 2;
  2: a := 3;
end
```

```
case (...) of
  0: b := a;
  1: c := a;
  2: d := a;
end
```

Def-Use Chains

```
a := 1
```

```
a := 2
```

```
a := 3
```

```
b := a
```

```
c := a
```

```
d := a
```

SSA Form

```
a_1 := 1
```

```
a_2 := 2
```

```
a_3 := 3
```

```
a_4 := \Phi(a_1, a_2, a_3)
```

```
b_1 := a_4
```

```
c_1 := a_4
```

```
d_1 := a_4
```

Quadratic vs. (in practice) linear behavior

Monday, September 26, 2011
Computing SSA Form
Computing SSA Form

- Step 1: Compute the dominance frontier
Computing SSA Form

• Step 1: Compute the dominance frontier

• Step 2: Use dominance frontier to place Φ nodes
Computing SSA Form

• Step 1: Compute the dominance frontier
• Step 2: Use dominance frontier to place Φ nodes
 ▪ Naive, impractical step 2: put a Φ function for every variable at the beginning of every block
Computing SSA Form

• Step 1: Compute the dominance frontier
• Step 2: Use dominance frontier to place Φ nodes
 - Naive, impractical step 2: put a Φ function for every variable at the beginning of every block
 - Better: If node X contains assignment to a, put Φ function for a in dominance frontier of X
Computing SSA Form

- Step 1: Compute the dominance frontier
- Step 2: Use dominance frontier to place Φ nodes
 - Naive, impractical step 2: put a Φ function for every variable at the beginning of every block
 - Better: If node X contains assignment to a, put Φ function for a in dominance frontier of X
 - Adding Φ fn may require introducing additional Φ fn
Computing SSA Form

• Step 1: Compute the dominance frontier

• Step 2: Use dominance frontier to place Φ nodes
 - Naive, impractical step 2: put a Φ function for every variable at the beginning of every block
 - Better: If node X contains assignment to a, put Φ function for a in dominance frontier of X
 - Adding Φ fn may require introducing additional Φ fn

• Step 3: Rename variables so only one definition per name
Dominators

• Let X and Y be nodes in the CFG
 ▪ Assume single entry point Entry

• X dominates Y (written $X \geq Y$) if
 ▪ X appears on every path from Entry to Y
 ▪ Note \geq is reflexive

• X strictly dominates Y (written $X > Y$) if
 ▪ X dominates Y but $X \neq Y$
The dominator relationship forms a tree
- Edge from parent to child = parent dominates child
- Note: edges are not same as CFG edges!
The dominator relationship forms a tree

- Edge from parent to child = parent dominates child
- Note: edges are not same as CFG edges!
Computing Dominator Tree

• Standard algorithm due to Lengauer and Tarjan

• Runs in time $O(E\alpha(E, N))$
 - $E = \# \text{ of edges}, N = \# \text{ of nodes}$
 - where $\alpha(\cdot)$ is the inverse Ackerman’s function
 - Very slow growing; effectively constant in practice

• Algorithm quite difficult to understand
 - But lots of pseudo-code available
Why (Else) Are Dominators Useful?

• Identify loops in CFG
 - All nodes X dominated by entry node H, where in CFG X can reach H and there is exactly one back edge to H among the X
 - A construct like “continue” must be represented as jumping to the end of the loop, to ensure one back edge

• Computing control dependences
 - Details given in the last few slides
Where do Φ Functions Go?

- We need a Φ function at node Z if
 - Two non-null CFG paths that both define v
 - Such that both paths start at two distinct nodes and end at Z
Dominance Frontiers: Illustration

- \(Y \) is in the dominance frontier of \(X \) iff
 - \(X \) dominates a predecessor of \(Y \)
 - \(X \) does not strictly dominate \(Y \)
Example

DF(1) =
DF(2) =
DF(3) =
DF(4) =
DF(5) =
DF(6) =
DF(7) =
Example

DF(1) = \{1\}
DF(2) = \{7\}
DF(3) = \{6\}
DF(4) = \{6\}
DF(5) = \{1, 7\}
DF(6) = \{7\}
DF(7) = \emptyset
Computing Dominance Frontiers

- $DF(X) = DF_{local}(X) \cup DF_{up}(S_X)$ where
 - $DF_{local}(X) = \{Y \in \text{succ}(X) \mid X \not> Y\}$
 - Any successor of X not (strictly) dominated by X is in $DF(X)$
 - $S_X = \{ Z \mid \text{idom}(Z) = X \}$
 - $\text{idom}(Z)$ is the parent of Z in the dominator tree
 - $DF_{up}(S_X) = \{Y \in DF(Z) \mid Z \in S_X \text{ and } X \not> Y\}$
 - Nodes from $DF(Z)$ that are not strictly dominated by X are also in $DF(X)$
Why Is This Sufficient?

• Suppose $Y \in DF(X)$
 - Then there is a $U \in \text{pred}(Y)$ such that $X \geq U$, $X \not\succ Y$
 - If $U = X$, then $Y \in DF_{\text{local}}(X) = \{Y \in \text{succ}(X) | X \not\succ Y\}$
 - Otherwise $U \neq X$
 - Then there is a node Z such that $\text{idom}(Z) = X$ and $Z \geq U$
 - Possibly $Z = U$
 - Since $X \not\succ Y$, $Z \not\succ Y$, hence $Y \in DF(Z)$
 - Therefore $Y \in DF_{\text{up}}(\{Z\}) = \{Y \in DF(Z) | X \not\succ Y\}$
• Let \(\text{sdom}(X) = \{Y \mid X > Y\} \)

• In a postorder traversal on dominator tree
 - \(\text{DF}(X) = \text{succ}(X) - \text{sdom}(X) \)
 - i.e., \(\text{DF}(X) = \text{DF}_{\text{local}}(X) \)
 - For each \(Z \) such that \(\text{idom}(Z) = X \) do
 - \(\text{DF}(X) = \text{DF}(X) \cup (\text{DF}(Z) - \text{sdom}(X)) \)
 - i.e., \(\text{DF}(X) = \text{DF}(X) \cup \text{DF}_{\text{up}}(Z) \)
Equivalent Algorithm

• In a postorder traversal on dominator tree
 - $\text{DF}(X) = \text{succ}(X)$
 - For each Z such that $\text{idom}(Z) = X$ do
 - $\text{DF}(X) = \text{DF}(X) \cup \text{DF}(Z)$
 - $\text{DF}(X) = \text{DF}(X) - \text{sdom}(X)$

• There’s another equivalent algorithm that runs in $O(E+|DF|)$
Computing SSA Form

• Step 1: Compute the dominance frontier

• Step 2: Use dominance frontier to place Φ nodes

• Step 3: Rename variables so only one definition per name
Step 2: Placing Φ Functions for v

- Let S be the set of nodes that define v.
- Need to place Φ function in every node in $DF(S)$.
 - Recall, those are all the places where the definition of v in S and some other definition of v may meet.
- But a Φ function adds another definition of v!
 - $v := \Phi(v, ..., v)$
- So, iterate
 - $DF_1 = DF(S)$
 - $DF_{i+1} = DF(S \cup DF_i)$
Example

1: x := 3

5: x := 4

8: x := 5

Entry

2

3

4

6

7

9

10

11

Exit

Monday, September 26, 2011
Example

Entry

1: x := 3

2

3

5: x := 4

6

7

8: x := 5

9

10

11

Exit

1

2

3

5

6

9

7

8

10

11
Example

Entry

1: x := 3

2

3

5: x := 4

6

7

8: x := 5

10

11

Exit

= need Φ function

Monday, September 26, 2011
Step 3: Renaming Variables

• Top-down (DFS) traversal of dominator tree
 ▪ At definition of \(v \), push new \# for \(v \) onto the stack
 ▪ When leaving node with definition of \(v \), pop stack
 ▪ Intuitively: Works because there’s a \(\Phi \) function, hence a new definition of \(v \), just beyond region dominated by definition

• Can be done in \(O(E + |DF|) \) time
 ▪ Linear in size of CFG with \(\Phi \) functions
Eliminating Φ Functions

- Basic idea: Φ represents facts that value of join may come from different paths
 - So just set along each possible path

\[
\begin{align*}
 w_2 &:= y_1 + z_1 \\
 w_3 &:= w_1 + y_3 \\
 w_4 &:= \Phi(w_2, w_3) \\
 z &:= w_4
\end{align*}
\]
Eliminating Φ Functions in Practice

• Copies performed at Φ fns may not be useful
 ▪ Joined value may not be used later in the program
 - (So why leave it in?)

• Use dead code elimination to kill useless Φs

• Subsequent register allocation will map the (now very large) number of variables onto the actual set of machine register
Efficiency in Practice

• Claimed:

 - SSA grows linearly with size of program

<table>
<thead>
<tr>
<th>Package name</th>
<th>Statements in all procedures</th>
<th>Statements per procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EISPACK</td>
<td>7,034</td>
<td>22 Min, 89 Median, 327 Max</td>
<td>Dense matrix eigenvectors and values</td>
</tr>
<tr>
<td>FLO52</td>
<td>2,054</td>
<td>9 Min, 54 Median, 351 Max</td>
<td>Flow past an airfoil</td>
</tr>
<tr>
<td>SPICE</td>
<td>14,093</td>
<td>8 Min, 43 Median, 753 Max</td>
<td>Circuit simulation</td>
</tr>
<tr>
<td>Totals</td>
<td>23,181</td>
<td>8 Min, 55 Median, 753 Max</td>
<td>221 FORTRAN procedures</td>
</tr>
</tbody>
</table>

Efficiency in Practice (cont'd)

- Convincing?
Arrays

- Need to handle array accesses

- Problem: How do we know whether \(A[i], A[j], \) and \(B[k] \) are all distinct?
 - Could have \(A=B \), e.g., \(\text{foo}(\text{int } A[], \text{int } B[])\) \(\ldots \) \(\text{foo}(a,a) \)
 - Could have \(i=j \)

- History: significant research on determining array dependencies, for parallelizing compilers
Arrays (cont’d)

• One possibility: treat arrays as single variables
 ▪ Then don’t need to worry about updates to them

\[
\begin{align*}
* & := A(i); \\
A(j) & := V; \\
* & := A(k) + 2;
\end{align*}
\]

• \texttt{Update}(A, j, V) makes a copy of A
 ▪ Then try to collapse unnecessary copies

• Structures are arrays with constant indexes
Pointers

• For each statement \(S \), let
 - \(\text{MustMod}(S) = \) variables always modified by \(S \)
 - \(\text{MayMod}(S) = \) variables sometimes modified by \(S \)
 - So if \(v \notin \text{MayMod}(S) \), then \(S \) must not modify \(v \)
 - \(\text{MayUse}(S) = \) variables sometimes used by \(S \)

• Then assume that statement \(S \)
 - writes to \(\text{MayMod}(S) \)
 - reads \(\text{MayUse}(S) \cup (\text{MayMod}(S) - \text{MustMod}(S)) \)

• Convincing? We’ll talk more about pointers later
As mentioned earlier, dominators can be used to compute control dependences.

- \(Y \) is *control dependent* on \(X \) if whether \(Y \) is executed depends on a test at \(X \).

- \(A, B, \) and \(C \) are control dependent on \(X \).
Postdominators and Control

• \(Y \) postdominates \(X \) if every path from \(X \) to Exit contains \(Y \)
 - I.e., if \(X \) is executed, then \(Y \) is always executed

• Then, \(Y \) is control dependent on \(X \) if
 - There is a path \(X \to Z_1 \to \cdots \to Z_n \to Y \) such that \(Y \) postdominates all \(Z_i \) and
 - \(Y \) does not postdominate \(X \)
 - I.e., there is some path from \(X \) on which \(Y \) is always executed, and there is some path on which \(Y \) is not executed
• Postdominators are just dominators on the CFG with the edges reversed

• To see what Y is control dependent on, we want to find the Xs such that in the reverse CFG

 - There is a path $X \leftarrow Z_1 \leftarrow \cdots \leftarrow Z_n \leftarrow Y$ where
 - for all $i, Y \geq Z_i$ and
 - $Y \not> X$

• I.e., we want to find $\text{DF}(Y)$ in the reverse CFG!