CMSC 714
Lecture 8
SGI Origin 2000 and Altix

Alan Sussman

Notes

- OpenMP assignment due next Wednesday
 - probably not a good idea to compile for profiling (with -pg)
 and for OpenMP at same time
 - can use omp_get_wtime() to time parts of your
 OpenMP() code — OK to call from different threads
 - other questions?
- MPI project grades by end of week
- Sample topics for group project posted soon

Shared Memory Multiprocessors

- **Cache coherence**
 - to keep different copies of same memory location (data block) the same
 - caching causes the problem, but is needed for performance
- **Snooping vs. directory-based coherence**
 - shared medium (bus or switched network) vs. distributed
directory to keep track of shared data blocks
 - either way, all memory accesses are to local copies near a
 processor, and data blocks change state and move around
to where they are needed
 - state of each block kept track of with a finite state machine
 (shared, exclusive, read-only, etc.)

SGI Origin 2000

- Scalable distributed shared memory (DSM) machine
 - from small building blocks, so scale up and down
- Each node is a dual-processor machine, with access to local
 memory, interconnection network and I/O system
- Nodes connected via "bristled" fat hypercube network
- Cache coherence maintained via directory that keeps track of
each data block (page)
 - both the state of the cache block, and where copies are located
 - protocol appears complicated, but all implemented in hardware, so
 usually fast — big problem is transitioning to exclusive state for
 writes, to invalidate copies and TLB entries
 - supports migrating whole pages across nodes, with OS help
- Memory system includes support for fetch-and-op primitives, to
 speed up some synchronization operations
 - avoid cache coherence activity
SGI Altix

- UV is current generation, after Origins
- Scales to 256 nodes (2 sockets/node, up to 8 cores/socket), 2K cores, 16TB memory in 1 global shared memory (GSM), in 1 Linux instance
 - limited by physical (44 bit) and virtual (48 bit) address spaces
 - sockets connected via fat tree
- Scales to 64 256-socket instances and 8PB memory, connected via NUMAlink through HUB chips in 8x8 torus
 - globally addressable memory (GAM) across the 64 Linux instances - think PGAS, or put/get, also good for MPI
 - 53 bit physical memory, 60 bit virtual
- System provides fast MPI implementation, fast collective operations, high performance I/O, reliability via error checking and retry, and offloading remote memory accesses to HUB

Altix HUB chip (cont.)

- Provides directory-based cache coherency for GSM and put/get for GAM
- Connects directly to QPI memory interface on Intel Xeon CPUs, not though PCI I/O bus
- Global Register Unit (GRU) for global addressing, TLB for address translation across nodes (directories), fast memory initialization w/o CPU aid, fast block copies (good for message passing too), scatter/gather memory ops
- Active Memory Unit (AMU) – cache coherent atomic memory operations, update multicasting for fast collective operations, message queues in cache coherent memory