Genome Assembly Paradigms

CMSC 423
Carl Kingsford
Shortest Common Superstring

Def. Given strings s_1, \ldots, s_n, find the shortest string T such that each s_i is a substring of T.

- NP-hard (contrast with case when requiring s_i to be subsequences of T)
- Approximation algorithms exist with factors: 4, 3, 2.89, 2.75, 2.67, 2.596, 2.5, ...
- Basic greedy method: find pair of strings that overlap the best, merge them, repeat (4 approximation):

 Given match, mismatch, gap costs, how can we compute the score of the best overlap?
Overlap Alignment

Score of an optimal alignment between a suffix of Y and a prefix of X

- Initialize first column to 0s
- Answer is maximum score in top row (traceback starts from there until it falls off left side)
Overlap Alignment

Score of an optimal alignment between a suffix of Y and a prefix of X

- Initialize first column to 0s
- Answer is maximum score in top row (traceback starts from there until it falls off left side)
K-mer Hashing

Only compute overlap alignment between reads that share a kmer:
The problem with Shortest Common Superstring (SCS): Repeats

Truth:

```
AAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
```

SCS:

```
AAAAAA
AAAAAA
AAAAAA
AAAAAA
```

More complex example:

```
ACCGCCT  ACCGCCT  ACCGCCT
```

2 or 3 copies?
Overlap graph:
Nodes = reads
Edges = overlaps

Given overlap graph, how can we find a good candidate assembly?
Overlap graph:
Nodes = reads
Edges = overlaps

Given overlap graph, how can we find a good candidate assembly?
Overlap graph:
Nodes = reads
Edges = overlaps

Given overlap graph, how can we find a good candidate assembly?

Hamiltonian Path (aka Traveling Salesman Path): visit every node in the graph exactly once.
Hamiltonian Path

- Motivation: Every read must be used in exactly one place in the genome.

- Hamiltonian Path is NP-hard.

- Though good solvers exist, they can’t operate on the millions of reads from a sequencing project.

- Solution: greedy walk along the graph.

Assembly via Eulerian Path
de Bruijn graph: nodes represent kmers, edges connect k-mers that are known to follow each other based on an observed read.

Can have > 1 edge between nodes.
A directed graph has an Eulerian cycle if and only if:
- All nodes have the same number of edges entering and leaving

Examples

tagacgaacgtacggtagg

tagacgaacgtacggtagg
	agaaccacgacgta
Example bacterial de Bruijn graph

Paths with no branches compressed into a single node

Eulerian path = use every edge exactly once.

With perfect data, the genome can be reconstructed by some Eulerian path through this graph.
Assembly via Eulerian Path

Let $dG(s)$ be the de Bruijn graph of string s. Then s corresponds to some Eulerian path in $dG(s)$.

A directed graph has an Eulerian path if and only if:
- One node has one more edge leaving it than entering
- One node has one more edge entering than leaving
- All other nodes have the same number of edges entering and leaving

How can we find such a path?
Connect node with out-degree < in-degree to node with out-degree < in-degree. So that we will have an Eulerian cycle.

Why will you return to u?

Walk from some arbitrary node u until you return to u, creating a doubly liked list of the path you visit.

Repeat until all edges used:
• Start from some node w on the current tour with unused edges*.
• Walk along unused edges until you return to w, inserting the visited nodes after w into the current tour list.

*How can find such a node quickly?
Eulerian Path Algorithm

Connect node with out-degree < in-degree to node with out-degree < in-degree. So that we will have an Eulerian cycle.

Walk from some arbitrary node u until you return to u, creating a doubly liked list of the path you visit.

Repeat until all edges used:
- Start from some node w on the current tour with unused edges*.
- Walk along unused edges until you return to w, inserting the visited nodes after w into the current tour list.

*How can find such a node quickly?

Why will you return to u?
The Problem with Eulerian Paths

There are typically an astronomical number of possible Eulerian tours with perfect data.

Adding back constraints to limit # of tours leads to a NP-hard problem.

With imperfect data, there are usually NO Eulerian tours.

Estimating # of parallel edges is usually tricky.

Aside: counting # of Eulerian tours in a directed graph is easy, but in an undirected graph is #P-complete (hard).

(Kingsford, Schatz, Pop, 2010)
Mate Pairs

Mate pair: 2 reads, of opposite orientation, separated by an approximately known distance
⇒ long range information

sequence ≈ 1000 bases from each end

select for a given size

chop up

≈ 1000 bases from each end
Scaffolding

Islands = “contigs”
Scaffolding

Islands = “contigs”
Scaffolding

Islands = “contigs”
Comparative Assembly

Align reads to known genome:

consistent differences = deviation from reference
rare differences = sequencing errors

Can use much lower coverage (e.g. 4X coverage instead of 20-30X for *de novo* assembly).

Aligning a large # of short sequences to one large sequence is an important special case of sequence alignment.
"1000" Genomes Project

find variants that occur in > 1% of the population: sequence ≈2500 genomes at 4X coverage, align them to reference.

<table>
<thead>
<tr>
<th>Population</th>
<th>Status</th>
<th>Available to research community (dates approx)</th>
<th>DNA sequenced from blood</th>
<th>Offspring samples from trios</th>
<th>First set</th>
<th>Second set</th>
<th>Third set</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utah residents (CEPH) with Northern and Western European ancestry (CEU)</td>
<td>Available</td>
<td>Available</td>
<td>no</td>
<td>yes</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Toscani in Italia (TSI)</td>
<td>Available</td>
<td>Available</td>
<td>no</td>
<td>no</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>British from England and Scotland (GBR)</td>
<td>Available</td>
<td>Available</td>
<td>no</td>
<td>no</td>
<td>96</td>
<td>4</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Finnish from Finland (FIN)</td>
<td>Available</td>
<td>Available</td>
<td>no</td>
<td>no</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Iberian populations in Spain (IBS)</td>
<td>Available to project</td>
<td>Available</td>
<td>no</td>
<td>yes</td>
<td>30</td>
<td>70</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Total European ancestry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>426</td>
<td>74</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Han Chinese in Beijing, China (CHB)</td>
<td>Available</td>
<td>Available</td>
<td>no</td>
<td>no</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Japanese in Toyko, Japan (JPT)</td>
<td>Available</td>
<td>Available</td>
<td>no</td>
<td>no</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Han Chinese South (CHS)</td>
<td>Available</td>
<td>Available</td>
<td>most</td>
<td>yes</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Chinese Dai in Xishuangbanna (CDX)</td>
<td>Available to project</td>
<td>Oct–Dec 2011</td>
<td>some</td>
<td>no</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Kinh in Ho Chi Minh City, Vietnam (KHV)</td>
<td>Available to project</td>
<td>Oct–Dec 2011</td>
<td>yes</td>
<td>some</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Chinese in Denver, Colorado (CHD) (pilot 3 only)</td>
<td>Available</td>
<td>Available</td>
<td>no</td>
<td>no</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>TOTAL East Asian ancestry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>200</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Yoruba in Ibadan, Nigeria (YRI)</td>
<td>Available</td>
<td>Available</td>
<td>no</td>
<td>yes</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Luhuya in Webuye, Kenya (LWK)</td>
<td>Available</td>
<td>Available</td>
<td>no</td>
<td>no</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Gambian in Western Division, The Gambia</td>
<td>Collecting samples</td>
<td>Mar–May 2012</td>
<td>no</td>
<td>yes</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

http://www.1000genomes.org/about#ProjectSamples
Summary

- Sanger sequencing reads DNA via synthesis; 800-1000bp.

- Assembly Paradigms:
 - Shortest Common Superstring (NP-hard; sensitive to repeats)
 - Hamiltonian cycle in overlap graph (NP-hard)
 - Eulerian cycle in de Bruijn graph (polynomial in basic form, but large # of solutions)

- Overlap alignment can be computed with slight variant of sequence alignment DP.
 - K-mer hashing technique avoids all pairs overlap alignment
Hard vs. Easy

- Eulerian path – visit every edge once (easy)
- Hamiltonian path – visit every node once (hard)

- Shortest common supersequence (easy)
- Shortest common superstring (hard)

- Counting Eulerian tours in directed graphs (easy)
- Counting Eulerian tours in undirected graphs (hard)

- Aligning 2 sequences (easy)
- Aligning $k > 2$ sequences (hard)

- Shortest path (easy)
- Longest path (hard)