Column Scores

Stephen F. Altschul

National Center for Biotechnology Information
National Library of Medicine
National Institutes of Health
The Score for Aligning a Letter to a Column

Basic question: What should be the score s_i for aligning a letter i to a particular column C (of aligned letters)?

From many algorithmic perspectives, this question is irrelevant, but it is very important for constructing biologically accurate multiple alignments.

Preliminary nomenclature and notation

Having dealt with weights, we are left with the “effective observed counts” of amino acids or nucleotides for C, which need not be integral. We will call these simply the *observed counts* \tilde{c}, with total number c. We will also sometimes have use for the *observed frequencies* $\tilde{f} \equiv \tilde{c}/c$. Note that some, indeed many, of the c_i and f_i may be zero. Null characters may or may not be counted; we will ignore them for now.

Another vector of interest are the *background frequencies* \tilde{p} with which the various letters occur in typical sequences.

Also, we will refer to the scores of a standard substitution matrix, such as BLOSUM-62, as $S_{i,j}$.
Sum Scores and Average Scores

Perhaps the simplest way to construct a score for aligning a letter to a column \mathbf{C} is as the sum, or average, of scores for individual letters in \mathbf{C}. In other words, one may define:

$$s_i \equiv \text{SIM}_{\text{sum}}(i, \mathbf{C}) \equiv \sum_j c_j S_{i,j},$$

or

$$s_i \equiv \text{SIM}_{\text{av}}(i, \mathbf{C}) \equiv \sum_j f_j S_{i,j}.$$

Although these scores are widely used, they have certain clear disadvantages. Even if \mathbf{C} contains many observations, and consists exclusively of a particular letter, that letter is essentially no more favored than it would be if \mathbf{C} consisted of a single sequence.

Log-Odds Scores

A generalization of the log-odds approach to pairwise alignment scores suggests we should define:

\[s_i \equiv \text{SIM}_{\text{log-odds}}(i, \mathcal{C}) \equiv \log \frac{q_i}{p_i}, \]

where \(q_i \) is the predicted frequency or target frequency for letter \(i \) in column \(\mathcal{C} \).

This leaves open the question of how to infer \(\tilde{q} \) from \(\tilde{c} \). In other words, given a set of observed letters for a column, how do we predict probabilities for new letters?

The simple approach of setting \(\tilde{q} = \tilde{f} \) runs into an immediate problem. The score for any letter \(i \) with \(f_i = 0 \) become \(-\infty \). This indeed makes sense if it is impossible to observe letter \(i \) in the given alignment position, but it is unwise to make such an inference from a small, or indeed a finite set of data.
Pseudocounts

One way around this difficulty is to assume add a vector \vec{b} of b total pseudocounts to the observed counts \vec{c}, and infer target frequencies using the formula:

$$\vec{q} = \frac{\vec{c} + \vec{b}}{c + b}$$

The pseudocounts can be chosen to be proportional to \vec{p}, so we have only the one free parameter b, and our formula becomes:

$$\vec{q} = \frac{\vec{c} + b\vec{p}}{c + b}$$

This approach has two nice properties. First, for $c = 0$ (i.e. no data), it implies log-odds scores \vec{s} that are uniformly 0. (Why?) Second, it implies that that as c grows large, with b fixed, the target frequencies \vec{q} approach the observed frequencies \vec{f}.

As we will see, this approach has a rigorous justification in terms of Bayesian statistics.
Problems with Simple Pseudocounts

Simple pseudocounts, defined by $\tilde{b} = bp$, usually work quite well in the DNA context. However, they have major deficiencies when applied to proteins.

Simple pseudocounts carry no information about relationships among the amino acids.

For a column with a single observation (i.e. $c = 1$), simple pseudocounts imply that all mismatch scores are $-\log(1 + \frac{1}{b})$. They clearly underperform the standard substitution scores $S_{i,j}$.

Question: How can one construct target frequencies \tilde{q} so that they converge to \tilde{f} when c is large, but so that they reconstitute the standard substitution scores when $c = 1$?
Data-Dependent Pseudocounts

Tatusov et al. proposed letting the pseudocounts depend upon the observed data. For example, if mainly hydrophobic residues are observed in C, a preference should be given to hydrophobic pseudocounts. One can engineer this approach to reduce to a standard substitution matrix when C consists of a single amino acid.

Specifically, let b_i equal bp_i times $\sum_j f_j e^{\lambda S_{i,j}}$. Note that if the observed amino acids tend to be similar to amino acid i, this factor tends to be greater than 1. The total number of pseudocounts $\sum_i b_i$ remains equal to b. (Why?)

Finally, modify the previous approach so that only the pseudocounts are used to infer \hat{q} when $c = 1$:

$$\hat{q} = \frac{(c-1)f + \hat{b}}{c-1+b}.$$

The column scores then reduce, when $c = 1$, to those implied by the standard matrix. Assuming the observed amino acid is a, we have:

$$S_i = \frac{1}{\lambda} \ln \frac{q_i}{p_i} = \frac{1}{\lambda} \ln \frac{bp_i}{bp_i} \sum_j f_j e^{\lambda S_{i,j}} = \frac{1}{\lambda} \ln e^{\lambda S_{i,a}} = S_{i,a}.$$