String Matching Z

(Following Gusfield Chapter 2)
Microscopy of chromosomes of a human female (karyotype):

Where does this string occur in the genome?
Exact String Matching

Exact String Matching Problem. Given a (long) string \(T \) and a shorter string \(P \), find all occurrences of \(P \) in \(T \). Occurrences of \(P \) are allowed to overlap.

- Motivation is obvious:
 - search for words in long documents, webpages, etc.
 - find subsequences of DNA, proteins that are known to be important.

- We’ll see 4 efficient algorithms for this problem.
The Simple (Slow) Algorithm

SimpMatch(T, P):
 for i = 1..|T|:
 j = 1
 while j ≤ |P| and T[i+j-1] == P[j]:
 j += 1
 if j == |P|+1: print “Occurs at”, i

- Runs in $O(|T| \times |P|)$ time.

- Information gathered in while loop at iteration i is ignored in iteration $i+1$.

- Key idea for speeding it up: use what we learned about T in the while loop to increment i by more than 1 in the outer loop.
Exploiting Patterns in P

![Diagram: After comparing “happy” to “happe” at iteration i,]

- After comparing “happy” to “happe” at iteration i,
 - we know that $T[i...i+3] = “happ” = P[1...4]$
 - we can deduce that there can be no match at $i+1$ because $T[i+1] = P[2] = “a”$ but $P[1] = “h”$
 - in fact, since “h” does not appear in $T[i...i+3] = P[1...4]$, we could set $i = i + 4$

- Since T will have matched some part of P, it is the similarities between various parts of P that allow us to make these deductions.

\Rightarrow Preprocess P to find these similarities.
Z-Algorithm
Def. $Z_i(P) =$ the length of the longest substring of P that starts at $i > 1$ and matches a prefix of P.

- $P = \text{"aardvark"}$: $Z_2 = 1$, $Z_6 = 1$
- $P = \text{"alfalfa"}$: $Z_4 = 4$
- $P = \text{"photophosphorescent"}$: $Z_6 = Z_{10} = 3$
String Search With Z_i

$$Z\text{Match}(T, P):$$
$$S = P\$T$$
Compute all Z_i for S
return all $i-|P|-1$ such that $Z_i = |P|$

(map indices of S to indices of T)

Why does this work?

- $Z_i = |P|$ if and only if the string starting at i matches P.
- Running time is $O(|P| + |T| + Z_S)$, where Z_S is the time to compute the Z_i for T.
- **Next:** an $O(|P| + |T|)$ algorithm for computing the Z_i.

Z Boxes

Z-box at i

Z_i i $i+Z_i-1$

Def. Z-box at i is the substring starting at i and continuing to $i+Z_i-1$. This is the substring that matches the prefix. There is no Z-box at i if $Z_i = 0$.

- Algorithm for computing Z_i will iteratively compute Z_k given:
 - $Z_2...Z_{k-1}$, and
 - the boundaries l, r of the rightmost Z-box found starting someplace in $2...k-1$.

Z Algorithm

- Input: $Z_2...Z_{k-1}$, and the boundaries l, r of the rightmost Z-box found starting someplace in $2...k-1$.
- Output: Z_k, and updated l, r

1. If $k > r$, explicitly compute Z_k by comparing with prefix.
 If $Z_k > 0$: $r = k + Z_k - 1$ and $l = k$ (since this is a new farther right Z-box).

2. If $k \leq r$, this is the situation:

 Two subcases:

 - $Z_{k'} < \beta$:

 Set $Z_k = Z_{k'}$ and leave l, r unchanged.

 - $Z_{k'} \geq \beta$:

 Explicitly compare after r to set Z_k. $l = k, r = \text{point where comparison failed}$
Analysis

- Runs in $O(|P|)$ time:
 - only match characters covered by a Z-box once, so there are $O(|P|)$ matches.
 - every iteration contains at most one mismatch, so there are $O(|P|)$ mismatches.

- Correctness follows by induction and the arguments we made in the description of the algorithm.

- Immediately gives an $O(|P| + |T|)$-time algorithm for string matching as described a few slides ago.
 - $O(|P| + |T|)$ is the best possible worst-case running time, since you might have to look at the whole input.
 - But better algorithms exist in practice that, for real instances, have expected sublinear runtime.