More Exact Matching

(Following Gusfield Chapter 2)
Knuth-Morris-Pratt
Knuth-Morris-Pratt (KMP)

- Shift by more than 1 place, if possible, upon mismatch.

Def. $spm_i(P) = \text{the length of the longest substring of } P \text{ that ends at } i > 1 \text{ and matches a prefix of } P \text{ and such that } P[i+1] \neq P[spm_i + 1].$ ("spm" stands for suffix, prefix, mismatch.)

KMP Algorithm: Suppose mismatch at $i+1$ of P: $

\Rightarrow \text{can shift by: } i - spm_i$
KMP

\[
T: \quad \overbrace{\text{X}}^{c} \quad spm_{p-1} \quad y \quad new \; p \quad p
\]

\[\Rightarrow \text{can set new } p \text{ to } spm_{p-1} + 1\]

c = p = 1 \quad // \text{ptrs into } T \text{ and } P, \text{ respectively}

\[\textbf{while } c \leq |T| - |P| + p:\]

\[\textbf{while } P[p] = T[c] \textbf{ and } p \leq n: \quad // \text{compare } P \text{ and } T\]

\quad p++

\quad c++

\textbf{if } p = n + 1: \textbf{ print } “\text{Found at”, } c - n \quad // \text{if found}

\textbf{if } p = 1: \quad // \text{failure at start means inc } c

\quad c++

\textbf{else:}

\quad p = spm_{p-1} + 1 \quad // “shift” by n - spm_{p-1} (even if p=n+1)
KMP Running Time

Pseudocode runs in $O(|T|)$ time (making at most $2|T|$ comparisons):

- In each iteration of the outer `while` loop, at most one character is compared that was compared in a previous iteration.
- Total comparisons: $\leq |T| + s$, where $s = \#$ of times through the outer `while` loop.
- $s \leq |T|$ since P is shifted by ≥ 1 each time.
- Therefore: $O(|T|)$ for the pseudocode on previous page.
Recall: Fundamental Preprocessing

Def. $Z_i(P) =$ the length of the longest substring of P that starts at $i > 1$ and matches a prefix of P.

- $P =$ “aardvark”: $Z_2 = 1, Z_6 = 1$
- $P =$ “alfalfa”: $Z_4 = 4$
- $P =$ “photophosphorescent”: $Z_6 = Z_{10} = 3$
Computing spm_i for KMP

$f(j) =$ the right end of the Z-box (if any) that starts at j.

$g(i) = \min \{ j : f(j) = i \}$ or 0 if empty set.

Thm. $spm_i = Zg(i)$ if $g(i) > 0$ otherwise 0

Proof.

$P[g(i) .. i] = P[1 .. Zg(i)]$ by the definition of Z.

Also, $P(i+1) \neq P[Zg(i)+1]$, otherwise $Zg(i)$ would be bigger.

So, $spm_i \geq Zg(i)$. But it can’t be longer, because otherwise $g(i)$ would be smaller.
Boyer-Moore
Boyer-Moore Main Ideas

- For a given shift, compare P to T from right to left.

```
thequickbrownfox
x
```

crown

- Two rules for shifting:
 1. Bad Character Rule
 2. Good Suffix Rule
Bad Character Rule

Def. $R_i(x) =$ position of the rightmost occurrence of character x before position i.

- When a mismatch occurs at pattern position i:

 $$ R_i(a) = R_i(T[k]) $$

 shift by $i - R_i(T[k])$ characters so that the next occurrence of $T[k]$ in the pattern is underneath position k in T.

 (Called the “bad character rule” because it fires on a mismatch, but really it shifts so that the next good character matches.)
Computing \(R_i(x) \)

Def. \(R_i(x) = \) position of the rightmost occurrence of character \(x \) before position \(i \).

- Array \(R[i,x] \) would depend on the size of the alphabet, which is undesirable.

- Better to use a collection of lists:
 - \(\text{Occur}[x] = \) positions where \(x \) occurs in \(P \) in decreasing order.

- To find \(R_i(x) \):
 - scan down list \(x \) until you find first index \(< i \)

- **Time:** at most \(O(n - i) \) time, since if mismatch occurred at position \(i \) then there can be at most \(n - i \) items on the list that are \(\geq i \).

- Only call this routine after matching \(O(n - i) \) characters, so at most doubles the running time.
Good Shift Rule

Apply these cases in order:

Case (A): If the rightmost occurrence of a matched suffix with different preceding character is aligned to matched part of T.

Case (B): The longest proper prefix of P that matches a suffix of α. Shift so that the prefix β matches the suffix β that was matched to T.

Case (C): If not (A) or (B), shift $|P|$ places.
Processing the good suffix rule

Def. $L(i) = \text{largest index such that } P[i..n] \text{ matches suffix of } P[1..L(i)] \text{ and } P[i-1] \neq \text{the character preceding that suffix (0 if no such index exists).}$

Def. $l(i) = \text{size of largest suffix of } P[i..n] \text{ that equals some prefix of } P \text{ (0 if none exists).}$

- Case (A): shift by $n - L(i)$.
- Case (B): if $L(i) = 0$: shift by $n - l(i)$ places.
- If match: shift by $n - l(2)$ places.
Def. \(N_j(P) = \) length of longest suffix of \(P[1..j] \) that is also a suffix of \(P \).

Recall: Def. \(Z_i(P) = \) the length of the longest substring of \(P \) that starts at \(i > 1 \) and matches a prefix of \(P \).

\(N_j(P) \) and \(Z_i(P) \) are reverses of each other: \(N_j(P) = Z_{n-j+1}(P^r) \), where \(P^r \) is \(P \) reversed. Can compute in \(O(n) \) time using Z-algorithm on \(P^r \).
Computing $L(i)$, continued

- $L(i) =$ largest index j such that $P[i..n]$ matches suffix of $P[1..L(i)]$ and $P[i-1] \neq$ the character preceding that suffix.

- $N_j(P) =$ length of longest suffix of $P[1..j]$ that is also a suffix of P.

\Rightarrow $L(i) =$ largest index j such that $N_j(P) = |P[i..n]| = n - i + 1$

- $x \neq y$ because otherwise $N_j(P)$ would be longer.

Compute $N_j[P]$ via Z-Algorithm for all j.
Initialize $L[i] = 0$ for all i.

\[
\text{for } j = 1 \text{ to } n - 1: \\
\quad i = n - N_j[P] + 1 \\
\quad L[i] = j
\]
Boyer-Moore

\[
\begin{align*}
 k & = 1 \\
 \textbf{while} & \quad k < |T| - |P| + 1: \\
 & \quad \text{Compare } P \text{ to } T[k..|P|] \text{ from right to left.} \\
 & \quad s = \max \{ \text{bad character rule, good suffix rule, 1} \} \\
 & \quad k \mathrel{+}= s
\end{align*}
\]

- Worst case running time = $O(nm)$ since might shift by 1 every time.
- Despite this, Boyer-Moore often the best choice in practice because on real texts the running time is often sublinear (since the heuristics allow skipping a lot of characters).
- Extensions exist that guarantee $O(|P| + |T|)$ running time.