Due Friday, November 2, 2012.

Problem 1. Draw the Decision Tree for Bubble Sort on three elements A, B, C (which start in positions indexed by 1, 2, 3 of the array, respectively). Note that Bubble Sort is inefficient so it does some redundant comparisons, and there are more than six leaves.

Problem 2. Assume that your computer has special hardware that finds the minimum of k (or fewer) elements in one comparison step. Your answers to this question should have n and k as parameters.

(a) Design an algorithm based on Merge Sort to sort n elements using this special hardware. (This is an upper bound.)

(b) Analyzed your algorithm. Get the high order term exactly.

(c) Use decision trees to find a lower bound for sorting when using this special hardware.

(d) Compare your lower and upper bounds.

Problem 3. Assume you have an alphabet of letters from “o” to “u”. Illustrate the operation of radix sort on the following list of English words:

```
tot, sup, sot, put, our, ups, pop, opt, rut, too
```