Program the following 13 functions in LISP. Make sure you test them thoroughly. Sample data will be mailed to you. Turn in a listing of your program and the results of applying the test data.

1. Given two sets of atoms \(x \) and \(y \) represented as lists, write functions \(\text{union}[x, y] \), \(\text{intersection}[x, y] \) and \(\text{set_difference}[x, y] \), for their union \(x \cup y \), intersection \(x \cap y \), and set difference \(u \setminus y \), respectively. Use the function \(\text{member}[n, x] \) defined below, which may also be written as \(n \in x \):

\[
\text{member}(x, u) = \begin{cases}
\text{nil} & \text{if null } u \\
\text{t} & \text{if car } u \text{ eq } x \\
\text{member}(x, \text{cdr } u) & \text{else}
\end{cases}
\]

For example, \((A \ B \ C) \cup (B \ C \ D) = (A \ B \ C \ D)\), \((A \ B \ C) \cap (B \ C \ D) = (B \ C)\), and \((A \ B \ C) \setminus (B \ C \ D) = (A)\).

Pay attention to getting correct the trivial (i.e., base) cases in which some of the arguments are nil. In general, it is important to understand clearly the trivial cases of functions.

2. Given an integer \(n \) and a list \(l \) of integers sorted in increasing order, write a function \(\text{merge}[n, l] \) which inserts \(n \) in its proper place in \(l \). For example, \(\text{merge}[3, '(2 \ 4)] = (2 \ 3 \ 4)\), and \(\text{merge}[3, '(2 \ 3)] = (2 \ 3 \ 3)\).

3. Given two sets of atoms \(x \) and \(y \) represented as ordered lists containing no duplicates, write functions \(\text{union}[x, y] \), \(\text{intersection}[x, y] \) and \(\text{set_difference}[x, y] \) giving the union, intersection, and set difference, respectively, of \(x \) and \(y \); the result is wanted as an ordered list.

Note that computing these functions of unordered lists takes a number of comparisons proportional to the square of the number of elements of a typical list, while for ordered lists, the number of comparisons is proportional to the number of elements.

4. Using \(\text{merge} \), write a function named \(\text{sort}[l] \) that transforms an unordered list \(l \) into an ordered list. Your algorithm should repeatedly invoke the \(\text{merge} \) function starting with an empty list, thereby running in \(O(n^2) \) time for a list of \(n \) elements.

5. Write a predicate \(\text{occur}[a, s] \) to indicate whether an atom \(a \) occurs in a given s-expression \(s \), e.g., \(\text{occur}[B, '((A B) . C)] = \text{t} \).

6. Write a function \(\text{num_occur}[a, s] \) that indicates how many times an atom \(a \) occurs in an s-expression \(s \), e.g., \(\text{num_occur}[B, '((A B) . C)] = 1 \).

7. Write a function \(\text{nodups}[s] \) to make a list without duplications of the atoms occurring in an s-expression \(s \), e.g., \(\text{nodups}[')(((A . B) . (C . A))] = (A B C)\).

8. Write a function \(\text{multiplicity}[s] \) that indicates which atoms occur more than once in an s-expression \(s \). The result should be in the form of a list of pairs (i.e., an assoc-list), where each pair consists of the atom that occurs more than once and its multiplicity, e.g., \(\text{multiplicity}[')(((A . B) . (C . A))] = ((A . 2))\).
9. Write a predicate multi_occur_sexpr\[x, y\] that indicates whether or not an s-expression
x has more than one occurrence of an s-expression y as a sub-expression, e.g., multi_occur_sexpr[\'((A \cdot B) \cdot (C \cdot (A \cdot B))), (A \cdot B)\] = t.