Miscellaneous Topics

Amol Deshpande
CMSC424
Topics

- Object Oriented, Object Relational
- Client-server, Parallel, Distributed Systems
- OLAP/Data Warehouses
- Information Retrieval
- Cloud Computing
 - Data centers, Map-reduce, NoSQL Systems
Topics

- Object Oriented, Object Relational
- Client-server, Parallel, Distributed Systems
- OLAP/Data Warehouses
- Information Retrieval
- Cloud Computing
 - Data centers, Map-reduce, NoSQL Systems
Motivation

- Relational model:
 - Clean and simple
 - Great for much enterprise data
 - But lot of applications where not sufficiently rich
 - Multimedia, CAD, for storing \textit{set data} etc

- Object-oriented models in programming languages
 - Complicated, but very useful
 - Smalltalk, C++, now Java
 - Allow
 - Complex data types
 - Inheritance
 - Encapsulation

- People wanted to manage objects in databases.
In the 1980’s and 90’s, DB researchers recognized benefits of objects.

Two research thrusts:
- **OODBMS**: extend C++ with transactionally persistent objects
 - Niche Market
 - CAD etc
- **ORDBMS**: extend Relational DBs with object features
 - Much more common
 - Efficiency + Extensibility
 - SQL:99 support

Postgres – First ORDBMS
- Berkeley research project
- Became Illustra, became Informix, bought by IBM
Object-Relational Data Models

- Extend the relational data model by including object orientation and constructs to deal with added data types.
- Allow attributes of tuples to have complex types, including non-atomic values such as nested relations.
- Preserve relational foundations, in particular the declarative access to data, while extending modeling power.
- Upward compatibility with existing relational languages.
Structured Types and Inheritance in SQL

- **Structured types** (a.k.a. **user-defined types**) can be declared and used in SQL

  ```sql
  create type Name as
  (firstname varchar(20),
   lastname varchar(20))
  final

  create type Address as
  (street varchar(20),
   city varchar(20),
   zipcode varchar(20))
  not final
  ```

 - Note: **final** and **not final** indicate whether subtypes can be created

- Structured types can be used to create tables with composite attributes

  ```sql
  create table person (  
   name Name,
   address Address,
   dateOfBirth date)
  ```

 - Dot notation used to reference components: `name.firstname`
Structured Types (cont.)

- User-defined row types

  ```sql
  create type PersonType as (  
    name Name,
    address Address,
    dateOfBirth date)
  not final
  ```

- Can then create a table whose rows are a user-defined type

  ```sql
  create table customer of CustomerType
  ```

- Alternative using unnamed row types.

  ```sql
  create table person_r(  
    name row(firstname varchar(20),  
             lastname varchar(20)),
    address row(street varchar(20),  
                city varchar(20),  
                zipcode varchar(20)),
    dateOfBirth date)
  ```
Methods

- Can add a method declaration with a structured type.

  ```
  method ageOnDate (onDate date)
  returns interval year
  ```

- Method body is given separately.

  ```
  create instance method ageOnDate (onDate date)
  returns interval year
  for CustomerType
  begin
      return onDate - self.dateOfBirth;
  end
  ```

- We can now find the age of each customer:

  ```
  select name.lastname, ageOnDate (current_date)
  from customer
  ```
Type Inheritance

- Suppose that we have the following type definition for people:

  ```sql
  create type Person
  (name varchar(20),
   address varchar(20))
  ```

- Using inheritance to define the student and teacher types

  ```sql
  create type Student
  under Person
  (degree varchar(20),
   department varchar(20))
  ```

  ```sql
  create type Teacher
  under Person
  (salary integer,
   department varchar(20))
  ```

- Subtypes can redefine methods by using **overriding method** in place of **method** in the method declaration.
Example of array and multiset declaration:

```sql
create type Publisher as
  (name varchar(20),
   branch varchar(20));
create type Book as
  (title varchar(20),
   author_array varchar(20) array [10],
   pub_date date,
   publisher Publisher,
   keyword-set varchar(20) multiset);
create table books of Book;
```
Creation of Collection Values

- Array construction
 \[\text{array} \left[\text{`Silberschatz'}, \text{`Korth'}, \text{`Sudarshan'} \right] \]

- Multisets
 \[\text{multiset} \left[\text{`computer'}, \text{`database'}, \text{`SQL'} \right] \]

- To create a tuple of the type defined by the books relation:
 \[\text{`Compilers'}, \text{array} \left[\text{`Smith'}, \text{`Jones'} \right], \text{new Publisher} \left(\text{`McGraw-Hill'}, \text{`New York'} \right), \text{multiset} \left[\text{`parsing'}, \text{`analysis'} \right] \]

- To insert the preceding tuple into the relation books
 \[\text{insert into} \ \text{books} \
 \text{values} \
 \left(\text{`Compilers'}, \text{array} \left[\text{`Smith'}, \text{`Jones'} \right], \text{new Publisher} \left(\text{`McGraw-Hill'}, \text{`New York'} \right), \text{multiset} \left[\text{`parsing'}, \text{`analysis'} \right] \right) ; \]
To find all books that have the word “database” as a keyword,

```sql
select title
from books
where 'database' in (unnest(keyword-set ))
```

We can access individual elements of an array by using indices

- E.g.: If we know that a particular book has three authors, we could write:

```sql
select author_array[1], author_array[2], author_array[3]
from books
where title = `Database System Concepts`
```

To get a relation containing pairs of the form “title, author_name” for each book and each author of the book

```sql
select B.title, A.author
from books as B, unnest (B.author_array) as A (author )
```

To retain ordering information we add a `with ordinality` clause

```sql
select B.title, A.author, A.position
from books as B, unnest (B.author_array) with ordinality as A (author, position )
```
Path Expressions

- Find the names and addresses of the heads of all departments:

  ```sql
  select head->name, head->address
  from departments
  ```

- An expression such as “head->name” is called a path expression.

- Path expressions help avoid explicit joins:
 - If department head were not a reference, a join of `departments` with `people` would be required to get at the address.
 - Makes expressing the query much easier for the user.
An Alternative: OODBMS

- Persistent OO programming
 - Imagine declaring a Java object to be “persistent”
 - Everything reachable from that object will also be persistent
 - You then write plain old Java code, and all changes to the persistent objects are stored in a database
 - When you run the program again, those persistent objects have the same values they used to have!

- Solves the “impedance mismatch” between programming languages and query languages
 - E.g. converting between Java and SQL types, handling rowsets, etc.
 - But this programming style doesn’t support declarative queries
 - For this reason (??), OODBMSs haven’t proven popular

- OQL: A declarative language for OODBMSs
 - Was only implemented by one vendor in France (Altair)
Currently a Niche Market
☆ Engineering, spatial databases, physics etc…

Main issues:
☆ Navigational access
 ➢ Programs specify go to this object, follow this pointer
☆ Not declarative

Though advantageous when you know exactly what you want, not a good idea in general
☆ Kinda similar argument as network databases vs relational databases
Comparison of O-O and O-R Databases

- **Relational systems**
 - simple data types, powerful query languages, high protection.

- **Persistent-programming-language-based OODBs**
 - complex data types, integration with programming language, high performance.

- **Object-relational systems**
 - complex data types, powerful query languages, high protection.

- **Object-relational mapping systems**
 - complex data types integrated with programming language, but built as a layer on top of a relational database system

- **Note:** Many real systems blur these boundaries
 - E.g. persistent programming language built as a wrapper on a relational database offers first two benefits, but may have poor performance.
Summary, cont.

- ORDBMS offers many new features
 - but not clear how to use them!
 - schema design techniques not well understood
 - No good logical design theory for non-1st-normal-form!
 - query processing techniques still in research phase
 - a moving target for OR DBA’s!

- OODBMS
 - Has its advantages
 - Niche market
 - Lot of similarities to XML as well…
Topics

- Object Oriented, Object Relational
- Client-server, Parallel, Distributed Systems
- OLAP/Data Warehouses
- Information Retrieval
- Cloud Computing
 - Data centers, Map-reduce, NoSQL Systems
Client-Server Systems

- Database functionality can be divided into:
 - **Back-end**: manages access structures, query evaluation and optimization, concurrency control and recovery.
 - **Front-end**: consists of tools such as *forms*, *report-writers*, and graphical user interface facilities.
- The interface between the front-end and the back-end is through SQL or through an application program interface.
Parallel Databases

Why?
- More transactions per second, or less time per query
- Throughput vs. Response Time
- Speedup vs. Scaleup

Database operations are *embarrassingly parallel*
- E.g. Consider a join between R and S on R.b = S.b

But, perfect speedup doesn’t happen
- Start-up costs
- Interference
- Skew
Parallel Systems

- Parallel database systems consist of multiple processors and multiple disks connected by a fast interconnection network.

- A **coarse-grain parallel** machine consists of a small number of powerful processors.

- A **massively parallel** or **fine grain parallel** machine utilizes thousands of smaller processors.

- Two main performance measures:
 - **throughput** --- the number of tasks that can be completed in a given time interval
 - **response time** --- the amount of time it takes to complete a single task from the time it is submitted
Speed-Up and Scale-Up

- **Speedup**: a fixed-sized problem executing on a small system is given to a system which is N-times larger.
 - Measured by:
 \[
 \text{speedup} = \frac{\text{small system elapsed time}}{\text{large system elapsed time}}
 \]
 - Speedup is **linear** if equation equals N.

- **Scaleup**: increase the size of both the problem and the system
 - N-times larger system used to perform N-times larger job
 - Measured by:
 \[
 \text{scaleup} = \frac{\text{small system small problem elapsed time}}{\text{big system big problem elapsed time}}
 \]
 - Scale up is **linear** if equation equals 1.
Speedup

- Linear speedup
- Sublinear speedup

![Graph showing speedup vs resources](image)
Scaleup

\[
\frac{T_S}{T_L}
\]

- linear scaleup
- sublinear scaleup

problem size
Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:

- **Startup costs**: Cost of starting up multiple processes may dominate computation time, if the degree of parallelism is high.

- **Interference**: Processes accessing shared resources (e.g., system bus, disks, or locks) compete with each other, thus spending time waiting on other processes, rather than performing useful work.

- **Skew**: Increasing the degree of parallelism increases the variance in service times of parallely executing tasks. Overall execution time determined by *slowest* of parallely executing tasks.
Parallel Databases

- Shared-nothing vs. shared-memory vs. shared-disk

(a) shared memory

(b) shared disk

(c) shared nothing

(d) hierarchical
Parallel Databases

<table>
<thead>
<tr>
<th></th>
<th>Shared Memory</th>
<th>Shared Disk</th>
<th>Shared Nothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Extremely fast</td>
<td>Disk interconnect is very fast</td>
<td>Over a LAN, so slowest</td>
</tr>
<tr>
<td>between processors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scalability ?</td>
<td>Not beyond 32 or 64 or so</td>
<td>Not very scalable (disk interconnect is the bottleneck)</td>
<td>Very very scalable</td>
</tr>
<tr>
<td></td>
<td>(memory bus is the bottleneck)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>Cache-coherency an issue</td>
<td>Transactions complicated; natural fault -tolerance.</td>
<td>Distributed transactions are complicated (deadlock detection etc);</td>
</tr>
<tr>
<td>Main use</td>
<td>Low degrees of parallelism</td>
<td>Not used very often</td>
<td>Everywhere</td>
</tr>
</tbody>
</table>
Distributed Systems

- Over a wide area network
 - Typically not done for *performance reasons*
 - For that, use a parallel system
 - Done because of necessity
 - Imagine a large corporation with offices all over the world
 - Also, for redundancy and for disaster recovery reasons
- Lot of headaches
 - Especially if trying to execute transactions that involve data from multiple sites
 - Keeping the databases in sync
 - 2-phase commit for transactions uniformly hated
 - Autonomy issues
 - Even within an organization, people tend to be protective of their unit /department
 - Locks/Deadlock management
 - Works better for query processing
 - Since we are only reading the data
Topics

- Object Oriented, Object Relational
- Client-server, Parallel, Distributed Systems
- OLAP/Data Warehouses
- Information Retrieval
- Cloud Computing
 - Data centers, Map-reduce, NoSQL Systems
OLAP

- On-line Analytical Processing
- Why?
 - Exploratory analysis
 - Interactive
 - Different queries than typical SPJ SQL queries
 - Data CUBE
 - A summary structure used for this purpose
 - E.g. *give me total sales by zipcode; now show me total sales by customer employment category*
 - Much much faster than using SQL queries against the raw data
 - The tables are *huge*
- Applications:
 - Sales reporting, Marketing, Forecasting etc etc
Data Warehouses

- A repository of integrated information for querying and analysis purposes
- A (usually) stand-alone system that integrates data from everywhere
 - Read-only, typically not kept up-to-date with the real data
 - Geared toward business analytics, data mining etc…
 - HUGE market today
- Heavily optimized
 - Specialized query processing and indexing techniques are used
 - High emphasis on pre-computed data structures like summary tables, data cubes
- Analysis cycle:
 - Extract data from databases with queries, visualize/analyze with desktop tools
 - E.g., Tableau
Data Warehouses

Figure 1. Data Warehousing Architecture
Query processing algorithms heavily optimized for these types of schemas

Many queries of the type:
Selections on dimension tables (e.g., state = ‘MD’)
Join fact table with dimension tables
Aggregate on a “measure” attribute (e.g., Quantity, TotalPrice)

For example:
select c_city, o_year, SUM(quantity)
from Fact, Customer, Product
where p_category = ‘Tablet’;
Need Generalized SQL Groupbys

- drill-down and roll-up

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Sales by Model by Year by Color</th>
<th>Sales by Model by Year</th>
<th>Sales by Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>black</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>white</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>black</td>
<td>85</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>white</td>
<td>115</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>290</td>
</tr>
</tbody>
</table>

Not relational (null values in the keys)

```
SELECT Model, ALL, ALL, SUM(Sales) FROM Sales WHERE Model = 'Chevy' GROUP BY Model
UNION
SELECT Model, Year, ALL, SUM(Sales) FROM Sales WHERE Model = 'Chevy' GROUP BY Model, Year
UNION
SELECT Model, Year, Color, SUM(Sales) FROM Sales WHERE Model = 'Chevy' GROUP BY Model, Year, Color;
```
More problems with Groupbys

- roll-up is asymmetric (e.g. does not aggregate by year or by color alone)
- cross-tabulation (spreadsheets)

![Table 5: Chevy Sales Cross Tab]

<table>
<thead>
<tr>
<th></th>
<th>1994</th>
<th>1995</th>
<th>total (ALL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>black</td>
<td>50</td>
<td>85</td>
<td>135</td>
</tr>
<tr>
<td>white</td>
<td>40</td>
<td>115</td>
<td>155</td>
</tr>
<tr>
<td>total (ALL)</td>
<td>90</td>
<td>200</td>
<td>290</td>
</tr>
</tbody>
</table>

- even if SQL syntax can be devised, a 6D cross-tab requires 64 groupby queries to generate it and 64 scans and sorts of the data

- most of these are not relational expressions but are in many report writers
CUBE:
A Relational Aggregate Operator Generalizing Group By

The Data Cube and
The Sub-Space Aggregates

Group By (with total)
By Color

Aggregate
Sum

RED
WHITE
BLUE

Sum

Cross Tab
ChevyFord By Color

By Make
Sum

By Make & Color

By Color & Year

By Year

By Make & Year

1990
1991
1992
1993

By Color

Sum

Database Management Systems
An Example

<table>
<thead>
<tr>
<th>SALES</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Year</td>
<td>Color</td>
<td>Sales</td>
</tr>
<tr>
<td>Chevy</td>
<td>1990</td>
<td>red</td>
<td>5</td>
</tr>
<tr>
<td>Chevy</td>
<td>1990</td>
<td>white</td>
<td>87</td>
</tr>
<tr>
<td>Chevy</td>
<td>1990</td>
<td>blue</td>
<td>62</td>
</tr>
<tr>
<td>Chevy</td>
<td>1991</td>
<td>red</td>
<td>54</td>
</tr>
<tr>
<td>Chevy</td>
<td>1991</td>
<td>white</td>
<td>95</td>
</tr>
<tr>
<td>Chevy</td>
<td>1991</td>
<td>blue</td>
<td>49</td>
</tr>
<tr>
<td>Chevy</td>
<td>1992</td>
<td>red</td>
<td>31</td>
</tr>
<tr>
<td>Chevy</td>
<td>1992</td>
<td>white</td>
<td>54</td>
</tr>
<tr>
<td>Chevy</td>
<td>1992</td>
<td>blue</td>
<td>71</td>
</tr>
<tr>
<td>Ford</td>
<td>1990</td>
<td>red</td>
<td>64</td>
</tr>
<tr>
<td>Ford</td>
<td>1990</td>
<td>white</td>
<td>62</td>
</tr>
<tr>
<td>Ford</td>
<td>1990</td>
<td>blue</td>
<td>63</td>
</tr>
<tr>
<td>Ford</td>
<td>1991</td>
<td>red</td>
<td>52</td>
</tr>
<tr>
<td>Ford</td>
<td>1991</td>
<td>white</td>
<td>9</td>
</tr>
<tr>
<td>Ford</td>
<td>1991</td>
<td>blue</td>
<td>55</td>
</tr>
<tr>
<td>Ford</td>
<td>1992</td>
<td>red</td>
<td>27</td>
</tr>
<tr>
<td>Ford</td>
<td>1992</td>
<td>white</td>
<td>62</td>
</tr>
<tr>
<td>Ford</td>
<td>1992</td>
<td>blue</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATA CUBE</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Year</td>
<td>Color</td>
<td>Sales</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
<td>942</td>
</tr>
<tr>
<td>Chevy</td>
<td>ALL</td>
<td>ALL</td>
<td>510</td>
</tr>
<tr>
<td>Ford</td>
<td>ALL</td>
<td>ALL</td>
<td>432</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>ALL</td>
<td>343</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>ALL</td>
<td>314</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>ALL</td>
<td>285</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>red</td>
<td>165</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>white</td>
<td>273</td>
</tr>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>blue</td>
<td>339</td>
</tr>
<tr>
<td>Chevy</td>
<td>1990</td>
<td>ALL</td>
<td>154</td>
</tr>
<tr>
<td>Chevy</td>
<td>1991</td>
<td>ALL</td>
<td>199</td>
</tr>
<tr>
<td>Chevy</td>
<td>1992</td>
<td>ALL</td>
<td>157</td>
</tr>
<tr>
<td>Ford</td>
<td>1990</td>
<td>ALL</td>
<td>189</td>
</tr>
<tr>
<td>Ford</td>
<td>1991</td>
<td>ALL</td>
<td>116</td>
</tr>
<tr>
<td>Ford</td>
<td>1992</td>
<td>ALL</td>
<td>128</td>
</tr>
<tr>
<td>Chevy</td>
<td>ALL</td>
<td>red</td>
<td>91</td>
</tr>
<tr>
<td>Chevy</td>
<td>ALL</td>
<td>white</td>
<td>236</td>
</tr>
<tr>
<td>Chevy</td>
<td>ALL</td>
<td>blue</td>
<td>183</td>
</tr>
<tr>
<td>Ford</td>
<td>ALL</td>
<td>red</td>
<td>144</td>
</tr>
<tr>
<td>Ford</td>
<td>ALL</td>
<td>white</td>
<td>133</td>
</tr>
<tr>
<td>Ford</td>
<td>ALL</td>
<td>blue</td>
<td>156</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>red</td>
<td>69</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>white</td>
<td>149</td>
</tr>
<tr>
<td>ALL</td>
<td>1990</td>
<td>blue</td>
<td>125</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>red</td>
<td>107</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>white</td>
<td>104</td>
</tr>
<tr>
<td>ALL</td>
<td>1991</td>
<td>blue</td>
<td>104</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>red</td>
<td>59</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>white</td>
<td>116</td>
</tr>
<tr>
<td>ALL</td>
<td>1992</td>
<td>blue</td>
<td>110</td>
</tr>
</tbody>
</table>
Data Mining

- Searching for patterns in data
 - Typically done in data warehouses

- Association Rules:
 - When a customer buys X, she also typically buys Y
 - Use ?
 - Move X and Y together in supermarkets
 - A customer buys a lot of shirts
 - Send him a catalogue of shirts
 - Patterns are not always obvious
 - Classic example: It was observed that men tend to buy beer and diapers together (may be an urban legend)

- Other types of mining
 - Classification
 - Decision Trees
Data Warehouses

- Data analytics a major industry right now, and likely to grow in near future
 - BIG Data !!
 - Extracting (actionable) knowledge from data really critical
 - Especially in real-time
- Some key technologies:
 - Parallelism – pretty much required
 - Column-oriented design
 - Lay out the data column-by-column, rather than row-by-row
 - Heavy pre-computation (like Cubes)
 - New types of indexes
 - Focusing on bitmap representations
 - Heavy compression
 - Map-reduce??
Topics

- Object Oriented, Object Relational
- Client-server, Parallel, Distributed Systems
- OLAP/Data Warehouses
- Information Retrieval
- Cloud Computing
 - Data centers, Map-reduce, NoSQL Systems
Information Retrieval

- Relational DB == Structured data
- Information Retrieval == Unstructured data
- Evolved independently of each other
 - Still very little interaction between the two
- Goal: Searching within documents
 - Queries are different; typically a list of words, not SQL
- E.g. Web searching
 - If you just look for documents containing the words, millions of them
 - Mostly useless
- Ranking:
 - This is the key in IR
 - Many different ways to do it
 - E.g. something that takes into account term frequencies
 - Pagerank (from Google) seems to work best for Web.
Relevance Ranking Using Terms

- **TF-IDF** (Term frequency/Inverse Document frequency) ranking:
 - Let $n(d) = $ number of terms in the document d
 - $n(d, t) =$ number of occurrences of term t in the document d.
 - Relevance of a document d to a term t

$$TF (d, t) = \log \left(1 + \frac{n(d, t)}{n(d)} \right)$$

- The log factor is to avoid excessive weight to frequent terms

- Relevance of document to query Q

$$r (d, Q) = \sum_{t \in Q} \frac{TF (d, t)}{n(t)}$$
The probability that a random surfer (who follows links randomly) will end up at a particular page

- **Intuitively:** Higher the probability, the more important the page

Surfer model:
- Choose a random page to visit with probability “alpha”
- If the number of outgoing edges = n, then visit one of those pages with probability \((1 - \alpha)/n\)
Topics

- Object Oriented, Object Relational
- Client-server, Parallel, Distributed Systems
- OLAP/Data Warehouses
- Information Retrieval
- Cloud Computing
 - Data centers, Map-reduce, NoSQL Systems
Cloud Computing: Outline

- Technologies behind cloud computing
 - Data centers
 - Virtualization
 - Programming Framework: Map-reduce
 - Distributed Key-Value Stores
- Some observations about the marketplace
Cloud Computing

- Computing as a “service” rather than a “product”
 - Everything happens in the “cloud”: both storage and computing
 - Personal devices (laptops/tablets) simply interact with the cloud

- Advantages
 - Device agonstic – can seamlessly move from one device to other
 - Efficiency/scalability: programming frameworks allow easy scalability (relatively speaking)
 - Reliability
 - Cost: “pay as you go” allows renting computing resources as needed – much cheaper than building your own systems
Cloud Computing

- Basic ideas have been around for a long time (going back to 1960’s)
 - Mainframes + thin clients (more by necessity)
 - Grid computing a few year ago
 - Peer-to-peer
 - Client-server models
 - ...

- But it finally works as we wished for…
 - Why now?… A convergence of several key pieces over the last few years
 - Does it really? … Still many growing pains
Data Centers

- The key infrastructure piece that enables CC
- Everyone is building them
- Huge amount of work on deciding how to build/design them
Amazon data centers: Some recent data

- 8 MW data center can include about 46,000 servers
- Costs about $88 million to build (just the facility)
- Power a pretty large portion, but server costs still dominate

“Every day, Amazon Web Services adds enough new capacity to support all of Amazon.com’s global infrastructure through the company’s first 5 years, when it was a $2.76B annual revenue enterprise”

source: James Hamilton Presentation
Data Centers

- Power distribution
 - Almost 11% lost in distribution – starts mattering when the total power consumption is in millions
- Modular and pre-fab designs
 - Fast and economic deployments, built in a factory

Source: James Hamilton Presentation
Data Centers

- Networking equipment
 - Very very expensive
 - Bottleneck – forces workload placement restrictions

- Cooling/temperature/energy issues
 - Appropriate placement of vents, inlets etc. a key issue
 - Thermal hotspots often appear and need to worked around
 - Overall cost of cooling is quite high
 - So is the cost of running the computing equipment
 - Both have led to issues in energy-efficient computing
 - Hard to optimize PUE (Power Usage Effectiveness) in small data centers
 - ➔ may lead to very large data centers in near future

source: James Hamilton Presentation
Virtualization

- Virtual machines (e.g., running Windows inside a Mac) etc. has been around for a long time
 - Used to be very slow…
 - Only recently became efficient enough to make it a key for CC

- Basic idea: run virtual machines on your servers and sell time on them
 - That’s how Amazon EC2 runs

- Many advantages:
 - Security: virtual machines serves as almost impenetrable boundary
 - Multi-tenancy: can have multiple VMs on the same server
 - Efficiency: replace many underpowered machines with a few high-power machines
Virtualization

- Consumer VM products include VMWare, Parallels (for Mac) etc…

- Amazon uses “Xen” running on Redhat machines (may be old information)
 - They support both Windows and Linux Virtual Machines

- Some tricky things to keep in mind:
 - Harder to reason about performance (if you care)
 - Identical VMs may deliver somewhat different performance

- Much continuing work on the virtualization technology itself
Programming Frameworks

- Third key piece emerged from efforts to “scale out”
 - i.e., distribute work over large numbers of machines (1000’s of machines)

- Parallelism has been around for a long time
 - Both in a single machine, and as a cluster of computers

- But always been considered very hard to program, especially the distributed kind
 - Too many things to keep track of
 - How to parallelize, how to distribute the data, how to handle failures etc etc..

- Google developed MapReduce and BigTable frameworks, and ushered in a new era
Programming Frameworks

- Note the difference between “scale up” and “scale out”
 - scale up usually refers to using a larger machine – easier to do
 - scale out refers to distributing over a large number of machines

- Even with VMs, I still need to know how to distribute work across multiple VMs
 - Amazon’s largest single instance may not be enough
MapReduce Framework

- Provides a fairly restricted, but still powerful abstraction for programming

- Programmers write a pipeline of functions, called map or reduce
 - map programs
 - inputs: a list of “records” (record defined arbitrarily – could be images, genomes etc…)
 - output: for each record, produce a set of “(key, value)” pairs

 - reduce programs
 - input: a list of “(key, {values})” grouped together from the mapper
 - output: whatever

- Both can do arbitrary computations on the input data as long as the basic structure is followed
Word Count Example

```java
map(String key, String value):
  // key: document name
  // value: document contents
  for each word w in value:
    EmitIntermediate(w, "1");

reduce(String key, Iterator values):
  // key: a word
  // values: a list of counts
  int result = 0;
  for each v in values:
    result += ParseInt(v);
  Emit(AsString(result));
```
MapReduce Framework: Word Count

input files
- a b a c d b
- b c d a a a
- a b a b a b
- c c c c c

mappers
- (a, 1)
- (b, 1)
- (a, 1)
- (c, 1)
- (d, 1)
- (b, 1)

intermediate files
- (a, 1)
- (a, 1)
- (c, 1)
- (a, 1)
- (a, 1)
- (a, 1)
- (b, 1)
- (b, 1)
- (d, 1)
- (d, 1)
- (b, 1)

reducers
- (a, 8)
- (c, 5)
- (b, 6)
- (d, 2)

output files
More Efficient Word Count

input files → mappers → intermediate files → reducers → output files

(a, 2) (b, 2) (c, 1) (d, 1)

(a, 2) (a, 3) (c, 1) (c, 5)

(a, 8) (c, 5)

(b, 6) (d, 2)

Called “mapper-side” combiner
MapReduce Framework

- Has been used within Google for:
 - Large-scale machine learning problems
 - Clustering problems for Google News etc..
 - Generating summary reports
 - Large-scale graph computations

- Also replaced the original tools for large-scale indexing
 - i.e., generating the inverted indexes etc.
 - runs as a sequence of 5 to 10 Mapreduce operations

- Hadoop:
 - Open-source implementation of Mapreduce
 - Supports many other technologies as well
 - Very widely used
 - Many startups focusing on providing Hadoop services, different points in the Hadoop/DB space etc…
Bigtable/Key-Value Stores

- MapReduce/Hadoop great for batch processing of data
 - Much ongoing work on efficiency, other programming frameworks (e.g., for graph analytics, scientific applications)

- There is another usecase
 - Very very large-scale web applications that need real-time access with few ms latencies

- Bigtable (open source implementation: HBase)
 - Think of it as a very large distributed hash table
 - Support “put” and “get” operations
 - With some additional support to deal with versions

- Much work on these systems
 - Issues with “consistency” and “performance” quite challenging
Key-Value Stores

Some Interesting (somewhat old) numbers (http://highscalability.com)

- Twitter: 177M tweets sent on 3/1/2011 (nothing special about the date), 572,000 accounts added on 3/12/2011
- Dropbox: 1M files saved every 15 mins
- Stackoverflow: 3M page views a day (Redis for caching)
- Wordnik: 10 million API Requests a Day on MongoDB and Scala
- Mollom: Killing Over 373 Million Spams at 100 Requests Per Second (Cassandra)
- Facebook's New Real-time Messaging System: HBase to Store 135+ Billion Messages a Month
- Reddit: 270 Million Page Views a Month in May 2010 (Memcache)

How to support such scale?

- Databases typically not fast enough
- Facebook aims for 3-5ms response times
Issues

- Data Consistency, High Availability, and Low Latency hard to guarantee simultaneously
 - Impossible in some cases especially if networks can fail
- Distributed transactions
 - If a transaction spans multiple machines, what to do?
 - Correct solution: Two-phase Commit
 - Multi-round protocol
 - Too high latencies
- Dealing with replication
 - Replication of data is a must
 - How to keep them updated?
 - Eager vs lazy replication
 - Significant impact on consistency and availability
- Many systems in this space sacrifice consistency
Numerous systems designed in last 10 years that look very similar

- Differences often subtle, and if not hard to pin down, hard to understand
- Often the differences are about the implementations

Often called key-value stores

- The main provided functionality is that of a hashtable

Some earlier solutions

- Still very popular
 - Memcached + MySQL + Sharding
 - Sharding == partitioning
 - Store data in MySQL -- use Memcached to cache the data
 - Memcached not really a database, just a cache
 - All kinds of consistency issues
 - But... very very fast
MySQL + Memcached: End of an era? (High Scalability Blog)

“If you look at the early days of this blog, when web scalability was still in its heady bloom of youth, many of the articles had to do with leveraging MySQL and memcached. Exciting times. Shard MySQL to handle high write loads, cache objects in memcached to handle high read loads, and then write a lot of glue code to make it all work together. That was state of the art, that was how it was done. The architecture of many major sites still follow this pattern today, largely because with enough elbow grease, it works.”

Digg moved to Cassandra in 2009; LinkedIn to Voldemort

Twitter moved to Cassandra recently

“.. the rate of growth is accelerating.. a system in place based on shared mysql + memcache .. quickly becoming prohibitively costly (in terms of manpower) to operate.
Tokyo, Redis
- Very efficient key value stores

BigTable (Google), HBase (Apache open source), Cassandra (original Facebook, open sourced), Voldemort (originally LinkedIn)...
- At least in original iterations, focused on performance
- Cassandra later developed more sophisticated {\em tunable} consistency (maybe others too)

PNUTS (Yahoo!)
- Focus on geographically distributed stuff
 - Easier to deal with some issues if we assume everything is a single data center
 - Support tunable consistency for reads: read-any, read-latest etc..
- Form of master-slave replication
- No real support for multi-record transactions
Megastore (Google)

- Built on top of BigTable -- powers Google App Engine
 - Full ACID using Paxos, replication, two-phase commit
- Supports notion of “entity groups”
 - e.g., all emails of a user is a single entity group
 - Transactions that span a single entity group are generally fine
 - Transactions that span multiple entity groups would use two-phase commit -- not preferred

MongoDB

- Perhaps the poster child of key-value NoSQL stores
- Very scalable
 - Document-oriented storage with JSON-style documents
 - JSON becoming more popular than XML as the interchange format
- Very loose consistency guarantees
In Summary...

- Three key pieces of cloud computing
 - Data centers
 - Increasingly growing in numbers
 - Many challenges in building them, maintaining them etc..
 - Virtualization
 - Programming frameworks
 - Simplest (to explain): just use the virtual machines directly
 - But much harder to manage
 - Using Hadoop or HBase (as appropriate) simplifies the programming quite a bit
 - But Hadoop is open source, and managing hadoop installations not much easier

- Still many technical challenges to be solved
Cloud Computing: Outline

■ Technologies behind cloud computing
 ★ Data centers
 ★ Virtualization
 ★ Programming Frameworks

■ Some observations about the marketplace
Amazon Web Services

- Perhaps the best current solution to cloud computing
- However alternatives become attractive depending on your needs
- Current prices are very low and likely to remain that way

Small Instance - default
- 1.7 GB memory
- 1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit)
- 160 GB instance storage
- 32-bit platform
- I/O Performance: Moderate
- API name: m1.small

Large Instance
- 7.5 GB memory
- 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each)
- 850 GB instance storage
- 64-bit platform
- I/O Performance: High
- API name: m1.large

Extra Large Instance
- 15 GB memory
- 8 EC2 Compute Units (4 virtual cores with 2 EC2 Compute Units each)
- 1,690 GB instance storage
- 64-bit platform
- I/O Performance: High
- API name: m1.xlarge

Pricing Table

<table>
<thead>
<tr>
<th>Region: US East (Virginia)</th>
<th>Linux/UNIX Usage</th>
<th>Windows Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard On-Demand Instances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small (Default)</td>
<td>$0.085 per hour</td>
<td>$0.12 per hour</td>
</tr>
<tr>
<td>Large</td>
<td>$0.34 per hour</td>
<td>$0.48 per hour</td>
</tr>
<tr>
<td>Extra Large</td>
<td>$0.68 per hour</td>
<td>$0.96 per hour</td>
</tr>
<tr>
<td>Micro On-Demand Instances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro</td>
<td>$0.02 per hour</td>
<td>$0.03 per hour</td>
</tr>
<tr>
<td>Hi-Memory On-Demand Instances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Large</td>
<td>$0.50 per hour</td>
<td>$0.62 per hour</td>
</tr>
<tr>
<td>Double Extra Large</td>
<td>$1.00 per hour</td>
<td>$1.24 per hour</td>
</tr>
<tr>
<td>Quadruple Extra Large</td>
<td>$2.00 per hour</td>
<td>$2.48 per hour</td>
</tr>
<tr>
<td>Hi-CPU On-Demand Instances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>$0.17 per hour</td>
<td>$0.29 per hour</td>
</tr>
<tr>
<td>Extra Large</td>
<td>$0.68 per hour</td>
<td>$1.16 per hour</td>
</tr>
<tr>
<td>Cluster Compute Instances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadruple Extra Large</td>
<td>$1.60 per hour</td>
<td>N/A*</td>
</tr>
<tr>
<td>Cluster GPU Instances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadruple Extra Large</td>
<td>$2.10 per hour</td>
<td>N/A*</td>
</tr>
</tbody>
</table>

* Windows® is not currently available for Cluster Compute or Cluster GPU Instances
Google App Engine

- A very nice solution to build your websites on top of Google infrastructure
 - e.g., http://cidrassgn.appspot.com/
 - No virtual machines or any other way to access the computing, just through a web app

- Recently (two weeks ago) increased their pricing quite a bit
 - A lot of developers are very unhappy
 - Google Groups Thread
 - Also serves as a very nice reference to competing services, differences between them etc…
 - Also, bunch of discussion on how people spent optimizing their apps for the “wrong” metrics (i.e., Google is starting to charge for things they weren’t)
Create User Defined Types (UDT)

CREATE TYPE BarType AS (
 name CHAR(20),
 addr CHAR(20)
);
CREATE TYPE BeerType AS (
 name CHAR(20),
 manf CHAR(20)
);
CREATE TYPE MenuType AS (
 bar REF BarType,
 beer REF BeerType,
 price FLOAT
);

Create Tables of UDTs

★ CREATE TABLE Bars OF BarType;
★ CREATE TABLE Beers OF BeerType;
★ CREATE TABLE Sells OF MenuType;
Example

- **Querying:**
 - SELECT * FROM Bars;
 - Produces “tuples” such as:
 - BarType(‘Joe’’ s Bar’, ’Maple St.’)

- Another query:
 - SELECT bb.name(), bb.addr()
 - FROM Bars bb;

- Inserting tuples:
 - SET newBar = BarType();
 - newBar.name(’Joe’’ s Bar’);
 - newBar.addr(’Maple St.’);
 - INSERT INTO Bars VALUES(newBar);
Example

- UDT’s can be used as types of attributes in a table
 CREATE TYPE AddrType AS (
 street CHAR(30),
 city CHAR(20),
 zip INT
);
 CREATE TABLE Drinkers (
 name CHAR(30),
 addr AddrType,
 favBeer BeerType
);

- Find the beers served by Joe:
 SELECT ss.beer()->name
 FROM Sells ss
 WHERE ss.bar()->name = ’Joe’s Bar’;