Lecture 20
Fork/Join Parallelism
Divide and Conquer

- Quicksort, Mergesort are examples of divide-and-conquer algorithms
 - Basic structure of divide-and-conquer algorithms:
 1. If problem is small enough, solve it directly
 2. Otherwise
 a. Break problem into subproblems
 b. Solve subproblems recursively
 c. Assemble solutions of subproblems into over-all solution
 - If algorithm is tail-recursive, step 2.c. is not necessary
- Other examples
 - Depth-first search
 - Binary search
 - Euclid’s algorithm (200 B.C.!)
Parallelizing Divide-and-Conquer Algorithms

• The basic strategy: turn recursive calls into tasks
 – Solve the small instances directly
 – For larger instances requiring recursive calls, create tasks for each recursive call

• Performance tuning
 – Use a larger threshold than that specified in the algorithm for switch to sequential solving
 – Threshold should take account of original problem size, number of CPUs
Fork/Join Parallelism

• Parallelizing divide-and-conquer algorithms is frequent enough that Java 7 has specialized support: *Fork/Join parallelism*

• Components of Fork/Join framework
 – **Specialized executor class:** `ForkJoinPool`
 • Implements `ExecutorService` interface
 • Uses specialized thread-pool management, work distribution strategies tuned for divide and conquer
 – **Specialized task class:** `ForkJoinTask<V>`
 • Implements `Future<V>` interface
 • Has numerous specialized operations
 • Two important subclasses
 – `RecursiveTask`: like `Callable` in that value is returned
 – `RecursiveAction`: like `Runnable` in that no value is returned

• Basic idea: exploit specialized structure of divide-and-conquer dependencies to improve *parallelism* (i.e. execution time)
ForkJoinPool

• The executor for fork-join tasks
 – Maintains thread-pool
 – Allocates work among worker threads

• Key attributes
 – Limits number of workers to number of CPUs (default) or user-specified number
 – Workers that are waiting for subtasks to complete are put to work on other subtasks
 – Work-stealing used to keep workers busy
 • Each worker has its own work queue (actually, a work deque)
 • When a workers deque is empty, it takes work from another workers deque
Key ForkJoinPool Methods

• Constructors
 - ForkJoinPool()
 Creates a ForkJoinPool with parallelism equal to Runtime.availableProcessors(), using the default thread factory, no UncaughtExceptionHandler, and non-async LIFO processing mode.
 - ForkJoinPool(int parallelism)
 Creates a ForkJoinPool with the indicated parallelism level, the default thread factory, no UncaughtExceptionHandler, and non-async LIFO processing mode
 - ForkJoinPool(int parallelism, ForkJoinPool.ForkJoinWorkerThreadFactory factory, Thread.UncaughtExceptionHandler handler, boolean asyncMode)
 Creates a ForkJoinPool with the given parameters

• <V> V invoke(ForkJoinTask<V> task)
 Performs the given task, returning its result upon completion.
Deque? Work Stealing?

• Short for “double-ended queue” (pronounced “deck”)
• Each worker thread has a deque containing the tasks it should work on
 – When new tasks are created, they are “pushed” onto the front of the deque (i.e. opposite of what you do with a queue)
 – When a worker finishes a task, it takes the next task from the front of its deque (i.e. most recently pushed one!)
 – If a worker is blocked on a task it takes a fresh task from the front of its deque
• When a worker’s deque is empty it tries to steal a task from the back of one of the other workers’ deques
 – If it is successful it works on this task, using its own deque to push / pop subtasks
 – Futures-like features ensure results of “stolen” tasks are available to original task owner
ForkJoinTask\textless V\textgreater

- Tasks that are managed by ForkJoinPool
- Besides usual Future methods (e.g. \texttt{get()}), other key methods are:
 - \texttt{ForkJoinTask\textless V\textgreater \ fork()}
 Arranges to asynchronously execute this task
 - \texttt{V join()}
 Returns the result of the computation when it is done.
 - \texttt{V invoke()}
 Commences performing this task, awaits its completion if necessary, and returns its result, or throws an (unchecked) RuntimeException or Error if the underlying computation did so.
 - \texttt{static ForkJoinPool getPool()}
 Returns the pool hosting the current task execution, or null if this task is executing outside of any ForkJoinPool
- \texttt{getPool()}?
 - \texttt{ForkJoinTasks contain internal reference to the ForkJoinPool they belong too}
 - \texttt{When a ForkJoinTask forks another task, the new task inherits the ForkJoinPool from the caller}
More on `fork()`, `join()`

- **`fork()`** has effect of submitting task to `ForkJoinPool`
 - Task is placed in deque of “parent task” (i.e. one that performed `fork()`)
 - Task performing `fork()` keeps executing
- **`join()`** has effect like `get()` in `Future<V>`
 - Task performing `join()` waits until result of subtask is available
 - While it is waiting it may start work on other tasks in its deque
 - Note: unlike `get()`, `join()` is not a “blocking operation” in the standard sense: no `InterruptedException` can be thrown!
Structure of a Fork/Join Application

• Define class of ForkJoinTasks
 ForkJoinTasks create subtasks, call fork, join, etc.
• Client application (i.e. one calling Fork/Join application) does this:
 – Create ForkJoinPool
 – Create task for entire problem to be solved
 – Call invoke method of ForkJoinPool with this task
• Note that ForkJoinTasks do not usually call invoke method of ForkJoinPool!
Performance Tuning of Fork/Join Applications

- ForkJoinPools automatically manage number of threads to try to maximize parallelism
- Application must manage task-creation overhead
 - Use thresholds, just like with other executor-based parallelizing approaches
 - Thresholds determine when to create new tasks vs. using sequential solutions
When To Use Fork/Join?

• Fork/Join in Java tuned for maximizing parallelism
 – Idea is to give solutions to big problems fast
 – Algorithms should be in a divide-and-conquer style

• Other performance considerations are not paramount
 – Throughput
 – Responsiveness

• So, when to use Fork/Join?
 – When problem has natural divide-and-conquer formulation
 – Parallelism is primary performance criterion
Examples

• ForkJoinSum.java
• ForkJoinSumTunable.java
• ForkJoinMergeSort.java (Lecture 19 sources directory)