Algorithm Efficiency

• Efficiency
 - Amount of resources used by algorithm
 • Time, space

• Measuring efficiency
 - Benchmarking
 • Approach
 - Pick some desired inputs
 - Actually run implementation of algorithm
 - Measure time & space needed
 - Asymptotic analysis
Benchmarking

• Advantages
 – Precise information for given configuration
 • Implementation, hardware, inputs
• Disadvantages
 – Affected by configuration
 • Data sets (often too small)
 – Dataset that was the right size 3 years ago is likely too small now
 • Hardware
 • Software
 – Affected by special cases (biased inputs)
 – Does not measure intrinsic efficiency
Asymptotic Analysis

- Approach
 - Mathematically analyze efficiency
 - Calculate time as function of input size \(n \)
 - \(T \approx O(f(n)) \)
 - \(T \) is on the order of \(f(n) \)
 - “Big O” notation

- Advantages
 - Measures intrinsic efficiency
 - Dominates efficiency for large input sizes
 - Programming language, compiler, processor irrelevant
Search Comparison

- For number between 1…100
 - Simple algorithm = 50 steps
 - Binary search algorithm = \(\log_2(n) \) = 7 steps

- For number between 1…100,000
 - Simple algorithm = 50,000 steps
 - Binary search algorithm = \(\log_2(n) \) (about 17 steps)

- Binary search is much more efficient!
Asymptotic Complexity

- Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/2</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

• Comparing two functions
 – \(n/2 \) and \(4n+3 \) behave similarly
 – Run time roughly doubles as input size doubles
 – Run time increases linearly with input size
• For large values of \(n \)
 – \(\text{Time}(2n) / \text{Time}(n) \) approaches exactly 2
• Both are \(O(n) \) programs
• Example: \(2n + 100 \) \(\in O(n) \) (next slide)
Complexity Example

- $2n + 100 \Rightarrow O(n)$
Asymptotic Complexity

- Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - \(n^2 \) and \(2n^2 + 8 \) behave similarly
 - Run time roughly increases by 4 as input size doubles
 - Run time increases \textit{quadratically} with input size
- For large values of \(n \)
 - \(\text{Time}(2n) / \text{Time}(n) \) approaches 4
- Both are \(O(n^2) \) programs
- \textbf{Example:} \(\frac{1}{2} n^2 + 100 n \in O(n^2) \) (next slide)
Complexity Examples

- $\frac{1}{2}n^2 + 100n \Rightarrow O(n^2)$
Asymptotic Complexity

- Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log₂(n)</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

• Comparing two functions
 – \(\log_2(n) \) and \(5 \log_2(n) + 3 \) behave similarly
 – Run time roughly increases by constant as input size doubles
 – Run time increases logarithmically with input size
• For large values of \(n \)
 – \(\text{Time}(2n) - \text{Time}(n) \) approaches constant
 – Base of logarithm does not matter
 • Simply a multiplicative factor
 \(\log_a N = (\log_b N) / (\log_b a) \)
 • Both are \(O(\log(n)) \) programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs

![Graph showing # steps vs. input size with Big-O notation and f(n) functions]
Formal Definition of Big-O

• Function $f(n)$ is $O(g(n))$ if
 − For some positive constants M, N_0
 − $M \times g(n) \geq f(n)$, for all $n \geq N_0$

• Intuitively
 − For some coefficient M & all data sizes $\geq N_0$
 • $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

- $2n^2 + 10n + 1000 \Rightarrow O(n^2)$
 - Select $M = 4$, $N_0 = 100$
 - For $n \geq 100$
 - $4n^2 \geq 2n^2 + 10n + 1000$ is always true
 - Example \Rightarrow for $n = 100$
 - $40000 \geq 20000 + 1000 + 1000$
Observations

• For large values of n
 – Any $O(\log(n))$ algorithm is faster than $O(n)$
 – Any $O(n)$ algorithm is faster than $O(n^2)$

• Asymptotic complexity is fundamental measure of efficiency

• Big-O results only valid for big values of n
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>(O(\log(n)))</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>(O(n))</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>(O(n \log(n)))</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>(O(n^2))</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>(O(n^3))</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>(O(n^k))</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>(O(n^k))</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
<tr>
<td>(O(n^k))</td>
<td>Factorial</td>
<td>Brute-force search TSP</td>
</tr>
<tr>
<td>(O(n^n))</td>
<td>N to the N</td>
<td></td>
</tr>
</tbody>
</table>

From smallest to largest, for size \(n\), constant \(k > 1\)
Complexity Category Example
Complexity Category Example
Calculating Asymptotic Complexity

- As n increases
 - Highest complexity term dominates
 - Can ignore lower complexity terms

- **Examples**
 - $2n + 100 \Rightarrow O(n)$
 - $10n + n\log(n) \Rightarrow O(n\log(n))$
 - $100n + \frac{1}{2}n^2 \Rightarrow O(n^2)$
 - $100n^2 + n^3 \Rightarrow O(n^3)$
 - $\frac{1}{100}2n + 100n^4 \Rightarrow O(2n)$
Types of Case Analysis

• Can analyze different types (cases) of algorithm behavior
• Types of analysis
 – Best case
 – Worst case
 – Average case
 – Amortized
Best/Worst Case Analysis

- **Best case**
 - Smallest number of steps required
 - Not very useful
 - Example ⇒ Find item in first place checked

- **Worst case**
 - Largest number of steps required
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example ⇒ Find item in last place checked
Quicksort Example

• Quicksort
 – One of the fastest comparison sorts
 – Frequently used in practice
• Quicksort algorithm
 – Pick pivot value from list
 – Partition list into values smaller & bigger than pivot
 – Recursively sort both lists
• Quicksort properties
 – Average case = \(O(n\log(n)) \)
 – Worst case = \(O(n^2) \)
 • Pivot ≈ smallest / largest value in list
 • Picking from front of nearly sorted list
• Can avoid worst-case behavior
 – Select random pivot value
Average Case Analysis

- **Average case analysis**
 - Number of steps required for “typical” case
 - Most useful metric in practice
 - Different approaches: average case, expected case

- **Average case**
 - Average over all possible inputs
 - Assumes all inputs have the same probability
 - Example
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

- **Expected case**
 - Weighted average over all possible inputs
 - Based on probability of each input
 - Example
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Amortized Analysis

• **Approach**
 - Applies to worst-case sequences of operations
 - Finds average running time per operation
 - Example
 - Normal case = 10 steps
 - Every 10th case may require 20 steps
 - Amortized time = 11 steps

• **Assumptions**
 - Can predict possible sequence of operations
 - Know when worst-case operations are needed
 - Does not require knowledge of probability

• By using amortized analysis we can show the best way to grow an array is by doubling its size (rather than increasing by adding one entry at a time)
Complexity Category Example

300
Complexity Category Example