CMSC 132: Object-Oriented Programming II

Recursive Algorithms

Department of Computer Science
University of Maryland, College Park
Recursion

- Recursion is a strategy for solving problems
 - A procedure that calls itself

- Approach
 - If (problem instance is simple / trivial)
 - Solve it directly
 - Else
 - Simplify problem instance into smaller instance(s) of the original problem
 - Solve smaller instance using same algorithm
 - Combine solution(s) to solve original problem
Example – Factorial

• Factorial definition
 - \(n! = n \times (n-1) \times (n-2) \times (n-3) \times \ldots \times 3 \times 2 \times 1 \)
 - \(0! = 1 \)

• To calculate factorial of \(n \)
 - Base case
 - If \(n = 0 \), return 1
 - Recursive step
 - Calculate the factorial of \(n-1 \)
 - Return \(n \times \) (the factorial of \(n-1 \))

• Code
  ```c
  int fact ( int n ) {
    if ( n == 0 )
      return 1; // base case
    return n * fact(n-1); // recursive step
  }
  ```
Properties

- Recursion relies on the call stack
 - State of current procedure is saved when procedure is recursively invoked
 - Every procedure invocation gets own stack space
 - Let’s draw a diagram for factorial(4)
- Any problem solvable with recursion may be solved with iteration (and vice versa)
 - Use iteration with explicit stack to store state
 - Algorithm may be simpler for one approach
Recursion vs. Iteration

- Recursive algorithm

```c
int fact (int n) {
    if (n == 0) return 1;
    return n * fact(n-1);
}
```

- Iterative algorithm

```c
int fact ( int n ) {
    int i, res;
    res = 1;
    for (i=n; i>0; i--) {
        res = res * i;
    }
    return res;
}
```

Recursive algorithm is closer to factorial definition
Examples

• Find ✶ To find an element in an array
 - Base case
 • If array is empty, return false
 - Recursive step
 • If 1st element of array is given value, return true
 • Skip 1st element and recur on remainder of array
• Count Instances ✶ To count # of elements in an array
 - Base case
 • If array is empty, return 0
 - Recursive step
 • Skip 1st element and recur on remainder of array
 • Add 1 to result
• Some recursive problems require an auxiliary function
 - Auxiliary function ✶the one that actually is recursive
• Example: ArrayExamples.java
Examples

• Let’s look at recursive solutions for operations on a linked list
 – Find
 – Count
 – Print list
 – Print list in reverse

• Notice we can use the ?: operator for the implementation of some of these methods
Recursion vs. Iteration

• **Iterative algorithms**
 - May be more efficient
 • No additional function calls
 • Run faster, use less memory

• **Recursive algorithms**
 - Higher overhead
 • Time to perform function call
 • Memory for call stack
 - May be simpler algorithm
 • Easier to understand, debug, maintain
 - Natural for backtracking searches
 - Suited for recursive data structures
 • Trees, graphs…
Making Recursion Work

• Designing a correct recursive algorithm
• Verify
 – Base case(s) is
 • Recognized correctly
 • Solved correctly
 – Recursive case
 • Solves 1 or more simpler subproblems
 • Can calculate solution from solution(s) to subproblems
 • Makes progress toward the base case
• Uses principle of proof by induction
Proof By Induction

• Mathematical technique

• A theorem is true for all $n \geq 0$ if
 – Base case
 • Prove theorem is true for $n = 0$, and
 – Inductive step
 • Assume theorem is true for n (inductive hypothesis)
 • Prove theorem must be true for $n+1$
Types of Recursion

- Tail recursion
 - Has a recursive call as final action
 - Example
    ```java
    int factorial(int n, int partialResult) {
      if (n == 0)
        return partialResult;
      return factorial(n-1, n*partialResult);
    }
    ```
 - Can easily transform to iteration (loop)
 - In functional languages tail call elimination is often guaranteed by the language
Types of Recursion

• Non-tail recursion
 – Example

  ```c
  int nontail( int n ) {
      ...
      x = nontail(n-1) ;
      y = nontail(n-2) ;
      z = x + y;
      return z;
  }
  ```

 – Can transform to iteration using explicit stack
Possible Problems – Infinite Loop

• Infinite recursion
 – If recursion not applied to simpler problem

```c
int bad (int n) {
    if (n == 0)
        return 1;
    return bad(n);
}
```

– Infinite loop?
– Eventually halt when runs out of (stack) memory
 • Stack overflow
Possible Problems – Efficiency

• May perform excessive computation
 – If recomputing solutions for subproblems
• Example
 – Fibonacci numbers
 • fibonacci(0) = 0
 • fibonacci(1) = 1
 • fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
• Example: Fibonacci.java
Possible Problems – Efficiency

• Recursive algorithm to calculate fibonacci(n)
 – If n is 0 or 1, return 1
 – Else compute fibonacci(n-1) and fibonacci(n-2)
 – Return their sum

• Simple algorithm \Rightarrow exponential time $O(2^n)$
 – Computes fibonacci(1) 2^n times

• Can solve efficiently using
 – Iteration
 – Dynamic programming
 – Will examine different algorithm strategies later…
Examples of Recursive Algorithms

- Towers of Hanoi
- Binary search
- Quicksort
- N-queens
- Fractals
Example – Towers of Hanoi

- Problem
 - Move stack of disks between pegs
 - Can only move top disk in stack
 - Only allowed to place disk on top of larger disk
Example – Towers of Hanoi

• To move a stack of n disks from peg X to Y
 – Base case
 • If $n = 1$, move disk from X to Y
 – Recursive step
 • Move top $n-1$ disks from X to 3rd peg
 • Move bottom disk from X to Y
 • Move top $n-1$ disks from 3rd peg to Y

Iterative algorithm would take much longer to describe!
N-Queens

• Goal
 - Place queens on a board such that every row and column contains one queen, but no queen can attack another queen

• Recursive approach
 - To place queens on NxN board
 - Assume you’ve already placed K queens
Fractals

• Goal
 - Construct shapes using a simple recursive definition with a natural appearance

• Properties
 - Appears similar at all scales of magnification
 • Therefore “infinitely complex”
 - Not easily described in Euclidean geometry

Mandelbrot Set