Introduction

- That’s it for the basics of Ruby
 - If you need other material for your project, come to office hours or check out the documentation

- Next up: How do regular expressions (REs) really work?
 - Mixture of a very practical tool (string matching with REs) and some nice theory
 - A great computer science result
A Few Questions About REs

- What does a regular expression represent?
 - Just a set of strings
- What are the basic components of REs?
 - E.g., we saw that e+ is the same as ee*
- How are REs implemented?
 - We’ll see how to build a structure to parse REs

Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted \(\Sigma \)

- Example alphabets:
 - Binary: \(\Sigma = \{0,1\} \)
 - Decimal: \(\Sigma = \{0,1,2,3,4,5,6,7,8,9\} \)
 - Alphanumeric: \(\Sigma = \{0-9,a-z,A-Z\} \)
Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string ("" in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\varepsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \varepsilon \} \neq \varepsilon$
- Example strings:
 - $0101 \in \Sigma = \{0, 1\}$ (binary)
 - $0101 \in \Sigma = \text{decimal}$
 - $0101 \in \Sigma = \text{alphanumeric}$

Definition: String concatenation

- String concatenation is indicated by juxtaposition
 - If $s_1 = \text{super}$ and $s_2 = \text{hero}$, then $s_1 s_2 = \text{superhero}$
 - Sometimes also written $s_1 \cdot s_2$
 - For any string s, we have $s \varepsilon = \varepsilon s = s$
 - You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:
 - If $s_1 = \text{super} \in \Sigma_1 = \{s, u, p, e, r\}$ and $s_2 = \text{hero} \in \Sigma_2 = \{h, e, r, o\}$, then $s_1 s_2 = \text{superhero} \in \Sigma_3 = \{e, h, o, p, r, s, u\}$
Definition: Language

- A language L is a set of strings over an alphabet.

Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\}$
 - Give an example element of this language: (123) 456-7890
 - Are all strings over the alphabet in the language? No
 - Is there a Ruby regular expression for this language?

/un{d(3, 3)}/ \d(3, 3)-\d(4, 4)/

Example: The set of all strings over Σ
 - Often written Σ^*

Definition: Language (cont.)

- Example: The set of strings of length 0 over the alphabet $\Sigma = \{a, b, c\}$
 - $L = \{s | s \in \Sigma^* \text{ and } |s| = 0\} = \{\varepsilon\} \neq \emptyset$

- Example: The set of all valid Ruby programs
 - Is there a Ruby regular expression for this language? No
 - Matching (an arbitrary number of) brackets so that they are balanced is impossible using REs:

/\{\{\d(3, 3)\} \{\d(3, 3)-\d(4, 4)\}/

- Can REs represent all possible languages?
 - The answer turns out to be no!
 - The languages represented by regular expressions are called, appropriately, the regular languages.
Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ
- Concatenation L_1L_2 is defined as
 - $L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$
- Union is defined as
 - $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}$
- Kleene closure is defined as
 - $L^* = \{x \mid \varepsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots\}$

Definition: Regular Expressions

- Given an alphabet Σ, the regular expressions over Σ are defined inductively as

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
<td>${\varepsilon}$</td>
</tr>
<tr>
<td>each element $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

Constants
Definition: Regular Expressions (cont.)

- Let \(A\) and \(B\) be regular expressions denoting languages \(L_A\) and \(L_B\), respectively.

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB)</td>
<td>(L_AL_B)</td>
</tr>
<tr>
<td>((A</td>
<td>B))</td>
</tr>
<tr>
<td>(A^*)</td>
<td>(L_A^*)</td>
</tr>
</tbody>
</table>

Operations

- There are no other regular expressions over \(\Sigma\).

Regular Expressions Denote Languages

- By applying operations on constants
 - Generates a set of strings (i.e., a language)
 - Examples
 - \(a \rightarrow \{“a”\}\)
 - \(a|b \rightarrow \{“a”\} \cup \{“b”\} = \{“a”, “b”\}\)
 - \(a^* \rightarrow \{ \varepsilon \} \cup \{“a”\} \cup \{“aa”\} \cup \ldots = \{ \varepsilon , “a”, “aa”, … \}\)

- If \(s \in\) language generated by a RE \(r\), we say that \(r\) accepts, describes, or recognizes string \(s\).
Precedence

- Order in which operators are applied
 - In arithmetic
 - Multiplication \(\times\) > addition +
 - \(2 \times 3 + 4 = (2 \times 3) + 4 = 10\)
 - In regular expressions
 - Kleene closure \(^*\) > concatenation > union |
 - \(ab|c = (a\ b\)\ |\ c = \{“ab”, “c”\}\)
 - \(ab^* = a\ (b^*) = \{“a”, “ab”, “abb”…\}\)
 - \(a|b^* = a\ |\ (b^*) = \{“a”, “”, “b”, “bb”, “bbb”…\}\)
 - Can change order using parentheses ()
 - E.g., \(a(b|c), (ab)^*, (a|b)^*\)

Regular Languages

- The languages that can be described using regular expressions are the regular languages or regular sets

- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over \(\Sigma\)
 - reads the same backward or forward
 - \(\{a^nb^n \mid n > 0\}\) (\(a^n = \) sequence of \(n\) a’s)

- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Ruby Regular Expressions

Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition:

- /Ruby/ – concatenation of single-character REs
- /(Ruby|Regular)/ – union
- /(Ruby)^/ – Kleene closure
- /(Ruby)+/ – same as (Ruby)(Ruby)*
- /(Ruby)?/ – same as (ε |(Ruby)) (/ is ε)
- /[a-z]/ – same as (a|b|c|...|z)
- /[^0-9]/ – same as (a|b|c|...) for a,b,c,... ∈ Σ - {0..9}
- ^, $ – correspond to extra characters in alphabet

Implementing Regular Expressions

We can implement a regular expression by turning it into a finite automaton:
- A “machine” for recognizing a regular language

```
“String”
“String”  “String”
“String”   “String”
“String”
```

→

Yes
No
Finite Automata

- Machine starts in start or initial state
- Repeat until the end of the string is reached
 - Scan the next symbol \(s\) of the string
 - Take transition edge labeled with \(s\)
- String is accepted if automaton is in final state when end of string reached

Finite Automata: States

- Start state
 - State with incoming transition from no other state
 - Can have only 1 start state

- Final states
 - States with double circle
 - Can have 0 or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

0 0 1 0 1 1
accepted

Finite Automaton: Example 2

0 0 1 0 1 0
not accepted
What Language is This?

- All strings over \{0, 1\} that end in 1
- What is a regular expression for this language?

\[(0|1)^*1\]

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S2</td>
<td>Y</td>
</tr>
<tr>
<td>acc</td>
<td>S2</td>
<td>Y</td>
</tr>
<tr>
<td>bbc</td>
<td>S2</td>
<td>Y</td>
</tr>
<tr>
<td>aabbb</td>
<td>S1</td>
<td>Y</td>
</tr>
<tr>
<td>aa</td>
<td>S0</td>
<td>Y</td>
</tr>
<tr>
<td>ε</td>
<td>S0</td>
<td>Y</td>
</tr>
<tr>
<td>acba</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3 (cont.)

What language does this DFA accept?

\[a^*b^*c^* \]

S3 is a dead state
– a nonfinal state with no transition to another state

Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

Language?
- Strings over \(\{0,1,2,3\} \) with alternating even and odd digits, beginning with odd digit
What Lang. Does This FA Accept?

\[a^*b^*c^* \]

again, so DFAs are not unique

Practice

Give the English descriptions and the DFA or regular expression of the following languages:

- \(((0|1)(0|1)(0|1)(0|1)(0|1))^* \)
 - All strings with length a multiple of 5

- \((01)^*|(10)^*|(01)^*0|(10)^*1 \)
 - All alternating binary strings

- All binary strings containing the substring “11”
Practice

- Give the regular expressions and finite automata for the following languages
 - You and your neighbors’ names
 - All protein-coding DNA strings (including only ATCG and appearing in multiples of 3)
 - All binary strings containing an even length substring of all 1’s
 - All binary strings containing exactly two 1’s
 - All binary strings that start and end with the same number

Review

- Languages
 - Sets of strings
 - Operations on languages
- Regular expressions
 - Constants
 - Operators
 - Precedence
- Finite automata
 - States
 - Transitions
 - Accept strings