Finite Automata 2

Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far

- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - i.e., transition function must be a valid function
 - DFA is a special case of NFA

NFA for \((a|b)^*abb\)

- **ba**
 - Has paths to either S0 or S1
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to S3, so accepts string
Another example DFA

- Language?
 - \((ab|aba)^*\)

Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
NFA for \((ab|aba)^*\)

- aba
 - Has paths to states S0, S1
- ababa
 - Has paths to S0, S1
 - Need to use \(\varepsilon\)-transition

Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!
Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - the strings recognized by the DFA are over this set
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - How many can there be?
 - \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions
 - What's this definition saying that \(\delta\) is?
- A DFA accepts \(s\) if it stops at a final state on \(s\)

Formal Definition: Example

- \(\Sigma = \{0, 1\}\)
- \(Q = \{S0, S1\}\)
- \(q_0 = S0\)
- \(F = \{S1\}\)
- \[
\begin{array}{c|cc}
\delta & 0 & 1 \\
\hline
S0 & S0 & S1 \\
S1 & S0 & S1 \\
\end{array}
\]
Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q\) specifies the NFA’s transitions
 - Transitions on \(\varepsilon\) are allowed – can optionally take these transitions without consuming any input
 - Can have more than one transition for a given state and symbol
- An NFA accepts \(s\) if there is at least one path from its start to final state on \(s\)

Reducing Regular Expressions to NFAs

- Goal: Given regular expression \(e\), construct NFA: \(<e> = (\Sigma, Q, q_0, F, \delta)\)
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: \(|F| = 1\) in our NFAs
 - Recall \(F = \) set of final states
- Base case: \(a\)

\(<a> = (\{a\}, \{S0, S1\}, S0, \{S1\}, \{(S0, a, S1)\})\)
Reduction (cont.)

- Base case: ε

 < ε > = (ε, {S0}, S0, {S0}, \emptyset)

- Base case: \emptyset

 < \emptyset > = (\emptyset, {S0, S1}, S0, {S1}, \emptyset)

Reduction: Concatenation

- Induction: AB

 <A>
Reduction: Concatenation (cont.)

- Induction: AB

\[
\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)
\]
\[
\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)
\]
\[
\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_A\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\})
\]

Reduction: Union

- Induction: $(A|B)$
Reduction: Union (cont.)

- Induction: \((A|B)\)

- \(<A> = (\Sigma_A, Q_A, q_A, \delta_A)\)
- \(= (\Sigma_B, Q_B, q_B, \delta_B)\)
- \(<(A|B)> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0, S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0, \epsilon, q_A), (S0, \epsilon, q_B), (f_A, \epsilon, S1), (f_B, \epsilon, S1)\})\)

Reduction: Closure

- Induction: \(A^*\)

- \(q_A \rightarrow f_A\)
Reduction: Closure (cont.)

- Induction: A^*

$\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
$\langle A^* \rangle = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},$
$\delta_A \cup \{(f_A, \varepsilon, S1), (S0, \varepsilon, q_A), (S0, \varepsilon, S1), (S1, \varepsilon, S0)\})$

Reduction Complexity

- Given a regular expression A of size n...
 Size = # of symbols + # of operations

- How many states does $\langle A \rangle$ have?
 - 2 added for each $|$, 2 added for each $*$
 - $O(n)$
 - That's pretty good!
Practice

- Draw NFAs for the following regular expressions and languages
 - \((0|1)^*110^*\)
 - \(101^*111\)
 - all binary strings ending in 1 (odd numbers)
 - all alphabetic strings which come after “hello” in alphabetic order
 - \((ab^*c|d^*a|ab)d\)

Recap

- Finite automata
 - Alphabet, states…
 - \((\Sigma, Q, q_0, F, \delta)\)
- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)
- Reducing RE to NFA
 - Concatenation
 - Union
 - Closure
Next

- Reducing NFA to DFA
 - ε-closure
 - Subset algorithm
- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA

How NFA Works

- When NFA processes a string
 - NFA may be in several possible states
 - Multiple transitions with same label
 - ε-transitions
- Example
 - After processing “a”
 - NFA may be in states
 - S1
 - S2
 - S3
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states

- Example

```
NFA DFA
S1 S2 ε
S1, S2, S3
```

Reducing NFA to DFA (cont.)

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA (Σ, Q, q₀, Fₚ, δ)
 - Output
 - DFA (Σ, R, r₀, Fₚ, δ)
 - Using
 - ε -closure(p)
 - move(p, a)
\(\varepsilon \) -transitions and \(\varepsilon \) -closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions
 - If \(\exists \ p, p_1, p_2, \ldots p_n, q \in Q \) such that
 - \(\{p, \varepsilon, p_1\} \in \delta \)
 - \(\{p_1, \varepsilon, p_2\} \in \delta \)
 - \(\ldots \)
 - \(\{p_n, \varepsilon, q\} \in \delta \)

- \(\varepsilon \) -closure(\(p \))
 - Set of states reachable from \(p \) using \(\varepsilon \) -transitions alone
 - \(\varepsilon \) -closure(\(p \)) = \(\{q \mid p \xrightarrow{\varepsilon} q \} \)
 - Note
 - \(\varepsilon \) -closure(\(p \)) always includes \(p \)
 - \(\varepsilon \) -closure(\(\cdot \)) may be applied to set of states (take union)

\(\varepsilon \) -closure: Example 1

- Following NFA contains
 - \(S1 \xrightarrow{\varepsilon} S2 \)
 - \(S2 \xrightarrow{\varepsilon} S3 \)
 - \(S1 \xrightarrow{} S3 \)

- \(\varepsilon \) -closures
 - \(\varepsilon \) -closure(\(S1 \)) = \{ S1, S2, S3 \}
 - \(\varepsilon \) -closure(\(S2 \)) = \{ S2, S3 \}
 - \(\varepsilon \) -closure(\(S3 \)) = \{ S3 \}
 - \(\varepsilon \) -closure(\(\{ S1, S2 \} \)) = \{ S1, S2, S3 \} \cup \{ S2, S3 \} \)
ε -closure: Example 2

- Following NFA contains
 - $S_1 \xrightarrow{\varepsilon} S_3$
 - $S_3 \xrightarrow{\varepsilon} S_2$
 - $S_1 \xrightarrow{\varepsilon} S_2$

- ε -closures
 - ε -closure(S_1) = \{ S_1, S_2, S_3 \}
 - ε -closure(S_2) = \{ S_2 \}
 - ε -closure(S_3) = \{ S_2, S_3 \}
 - ε -closure(\{ S_2, S_3 \}) = \{ S_2 \} \cup \{ S_2, S_3 \}

ε -closure: Practice

- Find ε -closures for following NFA

- Find ε -closures for the NFA you construct for
 - The regular expression $(0|1^*)111(0^*1)$
Calculating move(p, a)

move(p, a)

- Set of states reachable from p using exactly one transition on a
 - Set of states q such that \(\{p, a, q\} \in \delta \)
 - \(\text{move}(p, a) = \{q \mid \{p, a, q\} \in \delta\} \)

- Note move(p, a) may be empty \(\emptyset \)
 - If no transition from p with label a

move(a, p) : Example 1

- Following NFA
 - \(\Sigma = \{a, b\} \)

- Move
 - \(\text{move}(S1, a) = \{S2, S3\} \)
 - \(\text{move}(S1, b) = \emptyset \)
 - \(\text{move}(S2, a) = \emptyset \)
 - \(\text{move}(S2, b) = \{S3\} \)
 - \(\text{move}(S3, a) = \emptyset \)
 - \(\text{move}(S3, b) = \emptyset \)
move(a,p) : Example 2

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - move(S1, a) = { S2 }
 - move(S1, b) = { S3 }
 - move(S2, a) = { S3 }
 - move(S2, b) = \emptyset
 - move(S3, a) = \emptyset
 - move(S3, b) = \emptyset

NFA → DFA Reduction Algorithm

- Input: NFA ($\Sigma, Q, q_0, F_n, \delta$), Output: DFA ($\Sigma, R, r_0, F_d, \delta$)
- Algorithm

 Let $r_0 = \varepsilon$-closure(q_0), add it to R \hspace{2cm} // DFA start state

 While \exists an unmarked state $r \in R$

 Mark r \hspace{2cm} // each state visited once

 For each $a \in \Sigma$

 Let $S = \{ s \mid q \in r \land \text{move}(q, a) = s \}$ \hspace{2cm} // states reached via a

 Let $e = \varepsilon$-closure(S) \hspace{2cm} // states reached via ε

 If $e \notin R$

 Let $R = e \cup R$ \hspace{2cm} // if state e is new

 Let $\delta = \delta \cup \{ r, a, e \}$ \hspace{2cm} // add transition $r \rightarrow e$

 Let $F_d = \{ r \mid \exists s \in r \text{ with } s \in F_n \}$ \hspace{2cm} // final if include state in F_n
NFA → DFA Example 1

- Start = ε-closure(S1) = \{ {S1,S3} \}
- $R = \{ {S1,S3} \}$
- $r \in R = \{S1,S3\}$
- Move({S1,S3},a) = {S2}
 - $\varepsilon = \varepsilon$-closure({S2}) = {S2}
 - $R = R \cup \{S2\} = \{ {S1,S3}, {S2} \}$
 - $\delta = \delta \cup \{{S1,S3}, a, {S2}\}$
- Move({S1,S3},b) = \emptyset

NFA

\[\begin{array}{c}
S1 \quad a \quad S2 \quad b \quad S3 \\
\end{array} \]

DFA

\[\begin{array}{c}
\{1,3\} \quad a \quad \{2\} \\
\end{array} \]

NFA → DFA Example 1 (cont.)

- $R = \{ {S1,S3}, {S2} \}$
- $r \in R = \{S2\}$
- Move({S2},a) = \emptyset
- Move({S2},b) = {S3}
 - $\varepsilon = \varepsilon$-closure({S3}) = {S3}
 - $R = R \cup \{S3\} = \{ {S1,S3}, {S2}, {S3} \}$
 - $\delta = \delta \cup \{{S2}, b, {S3}\}$

NFA

\[\begin{array}{c}
S1 \quad a \quad S2 \quad b \quad S3 \\
\end{array} \]

DFA

\[\begin{array}{c}
\{1,3\} \quad a \quad \{2\} \quad b \quad \{3\} \\
\end{array} \]
NFA → DFA Example 1 (cont.)

- $R = \{ \{S1, S3\}, \{S2\}, \{S3\} \}$
- $r \in R = \{S3\}$
- $\text{Move}(\{S3\}, a) = \emptyset$
- $\text{Move}(\{S3\}, b) = \emptyset$
- $F_d = \{\{S1, S3\}, \{S3\}\}$
 - Since $S3 \in F_n$
- Done!

NFA → DFA Example 2

- NFA
- DFA

- $R = \{ \{A\}, \{B, D\}, \{C, D\} \}$
NFA → DFA Example 3

\[R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \} \]

Equivalence of DFAs and NFAs

- Any string from \{A\} to either \{D\} or \{CD\}
 - Represents a path from A to D in the original NFA
Equivalence of DFAs and NFAs (cont.)

- Can reduce any NFA to a DFA using subset alg.

- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with \(n \) states, DFA may have \(2^n \) states
 - Since a set with \(n \) items may have \(2^n \) subsets
 - Corollary
 - Reducing a NFA with \(n \) states may be \(O(2^n) \)

Minimizing DFA

- Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names

- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape
Minimizing DFA: Hopcroft Reduction

- **Intuition**
 - Look for states that can be distinguish from each other
 - End up in different accept / non-accept state with identical input

- **Algorithm**
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

- No need to split partition \{S,T,U,V\}
 - All transitions on a lead to identical partition P2
 - Even though transitions on a lead to different states

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \(a\) from S,T lead to partition P2
 - Transition on \(a\) from U lead to partition P3

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\}
 - Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
DFA Minimization Algorithm (1)

- Input DFA (Σ, Q, q₀, Fₙ, δ), Output DFA (Σ, R, r₀, Fₜ, δ).
- Algorithm

 Let p₀ = Fₙ, p₁ = Q − F // initial partitions = final, nonfinal states
 Let R = { p | p ∈ {p₀,p₁} and p ≠ ∅ }, P = ∅ // add p to R if nonempty
 While P != R do // while partitions changed on prev iteration
 Let P = R, R = Ø
 For each p ∈ P // for each partition from previous iteration
 {p₀,p₁} = split(p,P) // split partition, if necessary
 R = R ∪ { p | p ∈ {p₀,p₁} and p ≠ ∅ } // add p to R if nonempty
 r₀ = p ∈ R where q₀ ∈ p // partition w/ starting state
 Fₜ = { p | p ∈ R and exists s ∈ p such that s ∈ Fₙ } // partitions w/ final states
 δ(p,c) = q when δ(s,c) = r where s ∈ p and r ∈ q // add transitions

DFA Minimization Algorithm (2)

- Algorithm for split(p,P)

 Choose some r ∈ p, let q = p − {r}, m = {} // pick some state r in p
 For each s ∈ q // for each state in p except for r
 For each c ∈ Σ // for each symbol in alphabet
 If δ(r,c) = q₀ and δ(s,c) = q₁ and // q's = states reached for c
 there is no pᵢ ∈ P such that q₀ ∈ pᵢ and q₁ ∈ pᵢ then
 m = m ∪ {s} // add s to m if q's not in same partition
 Return p − m, m // m = states that behave differently than r
 // m may be ∅ if all states behave the same
 // p − m = states that behave the same as r
Minimizing DFA: Example 1

- **DFA**

- **Initial partitions**
 - Accept \{ R \} \rightarrow P1
 - Reject \{ S, T \} \rightarrow P2

- **Split partition? → Not required, minimization done**
 - move(S,a) = T \rightarrow P2 \quad - \quad move(S,b) = R \rightarrow P1
 - move(T,a) = T \rightarrow P2 \quad - \quad move(T,b) = R \rightarrow P1

Minimizing DFA: Example 2

- **DFA**

- **Initial partitions**
 - Accept \{ R \} \rightarrow P1
 - Reject \{ S, T \} \rightarrow P2

- **Split partition? → Not required, minimization done**
 - move(S,a) = T \rightarrow P2 \quad - \quad move(S,b) = R \rightarrow P1
 - move(T,a) = S \rightarrow P2 \quad - \quad move(T,b) = R \rightarrow P1
Minimizing DFA: Example 3

- **DFA**

 - Initial partitions
 - Accept \{ R \} \rightarrow P1
 - Reject \{ S, T \} \rightarrow P2

 - Split partition? \rightarrow Yes, different partitions for B
 - move(S,a) = T \rightarrow P2
 - move(S,b) = T \rightarrow P2
 - move(T,a) = T \rightarrow P2
 - move(T,b) = R \rightarrow P1

Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - \(\Sigma = \{a,b\} \)
Complement of DFA (cont.)

- **Algorithm**
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

- **Note this only works with DFAs**
 - Why not with NFAs?

Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.
Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA

Relating REs to DFAs and NFAs

- Why do we want to convert between these?
 - Can make it easier to express ideas
 - Can be easier to implement
Implementing DFAs

It's easy to build a program which mimics a DFA

```c
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '\n': printf("rejected
"); return 0;
            default: printf("rejected
"); return 0;
        } break;
        case 1: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '\n': printf("accepted
"); return 1;
            default: printf("rejected
"); return 0;
        } break;
        default: printf("unknown state; I'm confused\n"); break;
    }
}
```

It's easy to build a program which mimics a DFA.

Alternatively, use generic table-driven DFA

<table>
<thead>
<tr>
<th>Given components (Σ, Q, q₀, F, δ) of a DFA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>let q = q₀</td>
</tr>
<tr>
<td>while (there exists another symbol s of the input string)</td>
</tr>
<tr>
<td>q := δ(q, s);</td>
</tr>
<tr>
<td>if q ∈ F then</td>
</tr>
<tr>
<td>accept</td>
</tr>
<tr>
<td>else reject</td>
</tr>
</tbody>
</table>

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set
Run Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!
- Constructing DFA for RE A may take $O(2^{|A|})$ time
 - But usually not the case in practice
- So there’s the initial overhead
 - But then processing strings is fast

Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of $(\Sigma, Q_A, q_A, \delta_A, \{f_A\})$, the components of the DFA produced from the RE
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity
Practice

- Convert to a DFA

- Convert to an NFA and then to a DFA
 - \((0|1)^*11|0^*\)
 - Strings of alternating 0 and 1
 - \(aba^*|(ba|b)\)

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - \(\text{RE} \rightarrow \text{NFA}\)
 - Concatenation, union, closure
 - \(\text{NFA} \rightarrow \text{DFA}\)
 - \(\varepsilon\)-closure & subset algorithm
- DFA
 - Minimization, complement
 - Implementation